医学、医療分野の著名な講師による講義を受け、医学とは何か、医師とは何か、医師になることはどういうことか、患者と医師の関係はどうあるべきかなどの根幹的問いに対して、自らの体験に基づき、考える機会を得る。その中で自らの将来の医師像を描き、医師あるいは研究者になることの動機を高めることを目標とする。

第1回 10/10 治すことのできない病気の向かい合う医療
講師：齋藤 正彦
東京大学医学部附属結核病院 院長
2012年春、数々の病気の後にいた東京都立松沢病院の病棟で、私は一瞬、言葉を失った。「先生、齋藤先生！あたし覚える？」院長先生？立派になさられて・・・」私の前に立っていたのは、30年前、東大で研修を経て勤務した松沢病院の慢性病棟で、初めて主治医になった患者だった。30年、私はこの間、医師としての修羅を重ね、学会発表をし、論文を書き、一人のとして、結婚して家庭を持ち、多くの人たちと交わり、別れを経験してきた。一方、その患者は、松沢病院の片町で、家族からも社会からも忘れられて30年を過ごした。私にとっては、人生は選択の連続であったけれど、患者にとって自分の人生を選択する余地はほとんどないに違いない。同じ病剤の限られた空間と金銭の分かれた小さな方室で、その中での人生、人生だった。病気、医療は、医師として、病気を治すことである。| そう定義するなら、精神医療師であるのかどうか疑わしい。精神科が対象とする代表的な病状である統合失調症、現在、私が専門としている認知症は、治すことのできない病気だからだ。しかし、精神の病気は、治るか、治らないか、医師には確信はない。どの診療科を専門としても、現代医療の限界を補うために、障害の薬剤、死へのプロセスを果たし続ける以外、医師としてすなわち治療に出会わないことはない。職業人生的終末がみえる年代になって、一人の精神科医として、自分ができたこと、できなかったことを通して、若い学生諸君と一緒に、治すことのできない病気、医師として、いかに向き合うべきかについて考えてみた。

講師略歴
1980年東京大学医学部医学科卒業、東京大学医学部附属病院精神神経科にて研修の後、東京都立松沢病院精神科医、ロンドン大学精神医学研究所研究員を経て、1981年に帰国して、東京大学医学部精神医学教室助手。1989年4月から2006年6月まで医療法人社団慶成会関連機関に勤務、2006年8月、慶和光病院院長を。2008年10月より2010年3月まで、慶和光病院院長。2012年4月より松沢病院参与、同年7月から現職。主な研究のテーマは、老年期認知症の医療、高齢者の意志形成、行為能力に関する司法判断。主な著書、編著に、『臨床精神医学講義(12)精神医学法と法律』(m,s)『精神医療におけるチームアプローチ』中山書店、Caring for the Elderly in Japan and the US.のRoutledge、図の「ほん」に気づいたなら(文春新書)、日本老年精神医学会、日本司法精神医学会、日本法と精神医療学会理事等。

医工融合研究による医療技術開発とレギュラトリーサイエンス
講師：佐久間 一郎
東京大学医学研究所
医療福祉大学院開発研究センター 教授
医工融合研究である生体医工学は医学・生物学・工学の境界領域の学問分野である。応用的側面では、安全で効果があり、信頼性の高い医療機器・医療技術を科学的見地に基づき開発することに生体医工学が寄与する。一方工学・生物学・工学において新たな定義の解釈・介入手法を提供することで、新たな科学的見地を生み出すことも可能である。講義では政権を含む電子工学を支援する医工学と医療機器の計測解析技術に関える研究例を示し、工学と医療に融合により新しい機械の実現が可能であることを解説する。「科学技術の成果を人と社会に役立てることを目的に、計測に基づく各種の測定、評価、判断を行い、科学技術の成果を人と社会との調和の上でも望ましい姿に調整するための科学」としてのレギュラトリーサイエンスの重要性が近年指摘されている。規制の発行開発では、あらかじめすべてのリスクを回避し解決するとあらゆる臨床研究が存在しない。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行い、基盤を維持し、機械の実現が可能である。科学技術の成果を安全に品質を基盤とし、技術開発を行う。
めである。医療の進歩により、先進国では寿命が寿命、移植
や再生医療などの最先端医療の恩恵を受け成長する一人
が世界には数多くの人道的問題が忘れられず、医療上
の危機に至る人が増え続けて改めて、そこで、多く
の現場では、治療の善悪や医療費の許可が得られないなど、
立ち方はかねてから大いに。しかし、それぞれの医療者が必要
的な医療を提供できない理由であるため、だからこそ、私
たちは現場へかえり、近年、活動のリクルートはさらに増加してい
るが、求めるニーズは多様な、医療の人びとが希望を見
出せずに、365日24時間、危機に耐えているのを目にする
と、医療者としての果たすべき責任を感じる。

図書略歴
専門：小児外科・外科 長崎県出身 長崎大学医学部卒業
長崎大学医学部第1外科教授、健康保険医師総合病院、長崎医療センタ
ー小児外科医長、長崎大学医学部附属病院、長崎大学医学部附属病院
長崎大学附属病院で勤務。2012年現在は長崎
大学および長崎大学医療院で勤務。2001年より国際認定医師団
（MSF）の医師・人道援助活動に参加。スランカ、リベリア、ソマリ
ア、シリアなど。計11国派遣され、外科医として活動に従事。2010年3月より国際認定医師日本会議。

第4回 10/31

ゲノム解析による疾患の遺伝的要因の
解明：目の前の患者さんに出発点とし
た病気の原因の研究

講師：池川 志郎
理化学研究所・統合生命医科学研究センター
骨髄幹細胞疾患治療研究機関
チームリーダー

医の視点。もちろん患者さんでしょう。病に苦しむ患者さん、
彼ら／彼女たちをどう助けるか。そのために自分に何ができる
か。医学／医療には帳敷きなくも無く、スポーツに明け暮れ
て安らかに学生生活を送り、何となく医者になった（君も、ベ
ッドサイドに病気に関して患者さんの前にて考えて forksか。
皆さんも当然考えてもいい。良く考えてもいい。答えは
一人一人違うっている。自分の心の中の、何となく、考えか
ら。その答えに基礎医学の研究を基にした自分の経験が参考に
なりそうだニほん。私の方法＝ゲノム医学科学は、現実の患者
さんに出発点にしています。患者さんの表現を解析し、こ
れと患者さんの遺伝子型（=個人の持つゲノムDNAの塩基配
列）の対応から疾患の遺伝的要因、原因遺伝子を明らかにする
一法が、基本的な研究の戦略。ゲノムの塩基配列が我々のブールズで、その異常が遺伝子病によると、配列を
読んでも異常をみつけられない一と極端な単純な方法で
ヒトゲノムプロジェクトを基盤とするゲノム研究の急速
な発展は、多くの疾患の遺伝的要因を見えてきた。メ
ンデルズの遺伝を説く習慣や遺伝子（単一遺伝子）におい
ては、患者さんの家系を用いた連鎖解析や候補遺伝子アプロ
ーチにより、多くの原因遺伝子が発見されました。近年の超
高密度シーケンス技術の発展的な進歩は、発見の速度を更に加
速させるでしょう。また、単一遺伝子だけではなく、糖尿病、
高血圧、骨粗鬆症といった「病がある」（common
disease），一般集団で非常に頻度の高い疾病にも、遺伝が
深く関わっている事が明らかになりました。これらの疾患は、
複数の疾患感受性遺伝子と環境要因の影響によって起こる多
因子遺伝病と理解されています。日本で始まったゲノムレベ
ルでの相関解析により、10数年間前には夢話であった、ゲノ
ムの中に隠れているこの疾患感受性遺伝子の同定が可能とな
りました。図書の現場で全てゲノムシーケンスが行われる時代、
パーソナルゲノムの時代が先に迫っていきます。新たな
時代を前にして、医療、医薬研究の原点を皆さんと一緒に
考えていければ幸いです。

講師略歴
卒業。整形外科に入り、関東病院にて研修。1992年心臓病研究
総合医療研究センター・整形外科・医長。1993年理学療法士研究
所・研究員。1995年東京大学医学研究所・助教。2000年理学
療法研究所・遺伝子多型研究センター・変性病関連遺伝子治癒研究
チーム（2013年より現在の名称に）。チームリーダー。
研究室HP. http://www.riken.jp/lab-ww/DA-team/research.html

第5回 11/14

紀伊半島、グアム島、ニューギニア島に
多発する神経線虫病研究
－筋萎縮性側索硬化症(ALS)とバーチャン
ソーン・認知症複合症(PDC)－

講師：葛原 茂樹
鈴鹿医療科学大学保健衛生学部 教授
三重大学 名誉教授

医学部学生時代に、最も強烈な印象を受けた病気の一つは
ALSであった。あらゆる柔軟筋が短期間に萎縮と麻痺を起こ
し、発声も咽下も呼吸もできなくなる進むの遠ざかり、それと
は対照的に全く難常に保存される意識と覚醒。そして僅かに
残った姿や動きの動きにてコミュニケーションを試みる患者
、そのいずれもが、私にとっては極めて印象的であった。ALSと
いう病気は、世界にはほぼ均一に発生する。しかし、例
外的に約100倍の高い率で発症する3地域～紀伊半島、グア
ム島、西ニューギニア（インドネシア領パプア）があること。
これにより神経内科の講義等で学んで、大きな興味を覚えた。ALS
のチャレモロには、PDCという地域固有の病気も多発する
。しかし、多発の原因は不明なまま、1980年代以降この
地域でのALS多発が報告されたことが報告され、興味は更
に広がる。1980年2月に、私は新設された三重大学医学
部総合内科の初任教授として着任した。その数年後に、紀伊
半島の小さな集落から1年間で3名のALS患者が来院した。
調べてみると、そこはかつてのALS多発地帯で、ALS多発
は残っていた。PDCの存在を確認された。ALSはグアムで
は激減し、紀伊では減少が見られない。バジャールスカ調査
により、密住地帯のバジャールス人ALAをPDC発症を確認した。人種
や環境も食物も異なる3地域。類似化する神経変性疾患が多発
した原因、近年人見下される原因は何かなのか。遺伝因子
と環境因子の解明は今後の課題であるが、これまでの知見と仮説を紹介す
る。

講師略歴
1970年 東京大学医学部卒業。同附属病院にて研修。1975年
同附属内科教務職員。1977年筑波大学医学部医療系講師。
1983年東京歯楽人を医学センター・医長。1990年三重大学医学
附属病院。2001年三重大学医学附属病院。2007年国立科学・
神経センター院長2010年より現職。2006年～2010年日本精神
学会理事長。2007年日本神経学会総会部会長。2006年～2007年厚労
省神経変性疾患研究審議会研究室審査員を務める。専門は神経変性疾患。
年大卒業神経疾患。現在の研究テーマは、西太平洋ALS多発地帯
の神経変性病研究。

第6回 11/28

超高齢社会向けの高齢先進国モデル
構想への挑戦

講師：武藤 真祐
医療法人社団 礼福会 福ホームクリニック 理事長
一般社団法人 高齢先進国モデル構想会議 代表理事

日本は、超高齢社会に突入している。高齢化の進行に伴って、
都市部での高齢者や地域、単身者などが多く、生活死の
増加やコミュニティ認知の希薄化の懸念される、東アジアの
先進地域の多くの国で2025年までに超高齢社会になるとみ
られ、日本と同様の社会課題が世界規模で発生する。日本は、
超高齢社会先進国として、具体的な策や政治を世界に提示して
いく役割がある。そこで私たちは、在宅医療を中心とした官
営コンソーシアムを立ち上げ、軽減と工夫を結集し、経済

医学序論「医の原点」シリーズ XIII 講義日程 場所：医学部 鐵門記念講堂 教育研究棟14F

<table>
<thead>
<tr>
<th>日時</th>
<th>講師</th>
<th>テーマ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10月10日（木） 16:40-18:10</td>
<td>斎藤 正彦</td>
<td>治すことができない病気を向き合う医療</td>
</tr>
<tr>
<td>2 10月17日（木） 16:40-18:10</td>
<td>佐久間 一郎</td>
<td>医工融合研究による医療技術開発とレギュラトリーサイエンス</td>
</tr>
<tr>
<td>3 10月24日（木） 16:40-18:10</td>
<td>黒崎 伸子</td>
<td>国際人道援助活動の現場における医の原点</td>
</tr>
<tr>
<td>4 10月31日（木） 16:40-18:10</td>
<td>池川 志郎</td>
<td>ゲノム解析による疾患の遺伝的要因の解明：目の前の患者さんを出発点とした病気の原因の研究</td>
</tr>
<tr>
<td>5 11月14日（木） 16:40-18:10</td>
<td>葛原 茂樹</td>
<td>祖母島、ガム島、ニューギニア島に多発する群集風土病研究－筋萎縮性側索硬化症（ALS）とバーキンソン症候群の関係</td>
</tr>
<tr>
<td>6 11月28日（木） 16:40-18:10</td>
<td>武藤 真裕</td>
<td>超高齢社会に向けた高齢先進国モデル構想への挑戦</td>
</tr>
<tr>
<td>7 12月5日（木） 16:40-18:10</td>
<td>小林 英司</td>
<td>未来の移植治療に挑む</td>
</tr>
</tbody>
</table>

問い合わせ先：東京大学医学部教育係（03-5841-3300）