Faculty of Medicine, the University of Tokyo was established in 1858, and in May of 2008 we celebrated the 150th anniversary of our founding. University Executives, faculty members, staff, and students came together for an impressive birthday ceremony, and a student-designed monument was installed in front of our main building. To mark the occasion, we also established the Museum of Health and Medicine in 2011, and we will build the Clinical Research Center at the hospital area.

With its history and traditions in mind, we must move Faculty of Medicine, the University of Tokyo continuously forward. Each year in our Faculty, some 110 students begin medical school and about 40 are admitted to School of Integrated Health Sciences (School of Health Sciences and Nursing until 2009). Also, through our highly competitive PhD-MD program and the Medical Scientist Training Program that we began in 2008, several outstanding medical students have already taken their first steps on the road to research careers. In 2010, we started the Clinical Research Training Program for clinicians and students who are interested in clinical research. Our graduate school has a wide range of programs of study, and we grant from 150 to 200 doctoral degrees each year. Since its establishment in 2007, our new School of Public Health has admitted many exceptional physicians and public health researchers. It is also noteworthy that many students who enter our Master’s degree program in the medical sciences after graduating with Bachelor’s degrees in fields other than medicine continue their studies in our doctoral programs.

We expect that medicine will be at the center of the rapidly advancing life sciences in the 21st century. Furthermore, as we face the consequences of having an increasing number of elderly people in our population, we know that integrated health sciences, preventive medicine, environmental medicine, and nursing will become increasingly important. We have internationally prominent teachers and researchers working in a wide variety of fields, and numerous endowed departments and social cooperation programs that embody productive relations between academia and industry.

Through our Programs for Leading Graduate Students, i.e. Graduate Program for Leaders in Life Innovation (GPLLI) and Graduate Program for Social ICT Global Creative Leaders (GCL), we support financially graduate students and collaborative research with other graduate schools. Among our international activities, we teach students mainly from Asia and southeast Asia but also from other regions, and we are forging new ties with universities in Europe and North America.

Thus we are involved in a broad and growing spectrum of activities: investigating the human body in health and disease; promoting cross-disciplinary integration at the cutting edge of medical research and education; improving methods of diagnosis, treatment, and acute and long-term care; strengthening preventive medicine; improving hospital management and medical services delivery; and communicating effectively in the wider social sphere.

In brief, we continue on our missions to provide the best possible medical care to patients in need today and to train top-level research scientists who will lay the foundations of medicine for tomorrow.

Kohei Miyazono
Dean, Faculty and Graduate School of Medicine
The University of Tokyo
1858 May Practitioners, trained in Dutch (European) medicine in Edo (Tokyo), laid out money to establish the Shutojo (vaccination center) in Kanda Mitamagaike.

Nov. Shutojo was destroyed in a fire that had spread from Kanda Aioicho. Shutojo continued its operations at other sites such as the residence of Ito Genboku.

1859 Sep. Shutojo was reconstructed at Shitaya Izumibashi Dohri.

1861 Oct. Shutojo was renamed as Seiyo Igaku-Sho (Institute of Western Medicine) and offered courses of Western Medicine in the fields of Education, Autopsy, and Vaccination.

1863 Feb. Seiyo Igaku-Sho was renamed as Igaku-Sho (Institute of Medicine).

1868 Jul. Igaku-Sho, affiliated with the Military Hospital which had been moved from Yokohama to Todo residence in Shitaya, was renamed as Daihyoin (the Great Hospital).

1869 Feb. The Daihyoin was renamed as Igakko-Ken-Byoin (Medical School and Hospital).

Dec. Igakko-Ken-Byoin was renamed as Daigaku Toko (University East Building).

1871 Jul. The Ministry of Education was established and Daigaku-Toko was renamed as Toko (East Building).

1872 Aug. A School System was established. Toko was renamed as Daiichi-Daigaku-Ku-Igakko (The First University District Medical School).

1874 May Daiichi-Daigaku-Ku-Igakko was renamed as Tokyo-Igakko (Tokyo Medical School).

1876 Nov. Tokyo-Igakko was moved to Hongo.

1877 Apr. Tokyo Igakko, affiliated with Tokyo-Kaisei School, was renamed as The University of Tokyo. Tokyo Medical School was renamed as The University of Tokyo Faculty of Medicine.

1886 Mar. The University of Tokyo was renamed as Imperial University, and The University of Tokyo Faculty of Medicine was renamed as the Imperial University Medical College. A Graduate School was established.

1897 Jun. The Imperial University was renamed as Tokyo Imperial University.

1917 Aug. Eiraku Hospital, affiliated with the Ministry of Education Medical Practice License Examination, moved to Tokyo Imperial University and was renamed as Koishikawa Hospital affiliated with Tokyo Imperial University Medical College.

1919 Apr. A faculty system was established renaming Tokyo Imperial University Medical College as the Faculty of Medicine.

1931 Feb. The first building of the Faculty of Medicine was constructed.

1936 Jan. The Brain Research Laboratory was built with funds donated by Mr. Hisasaburo Horikoshi.

Nov. The second building of the Faculty of Medicine (main building) was constructed.

1947 Oct. Tokyo Imperial University was renamed as The University of Tokyo.

1950 Apr. The Institute of Nursing was renamed as The University Nursing School.

1953 Apr. The School of Health Care and Nursing was founded.

Jul. The Graduate School was founded; and the Division of Medical Doctor Biological Science was established. The Brain Research Laboratory became the Brain Research Institute of the Faculty of Medicine.

1956 Apr. The Midwives School was established.

1958 Apr. The Division of Pharmaceutical Sciences became an independent faculty.

May The University of Tokyo Faculty of Medicine celebrated its centennial anniversary.

1961 Mar. The Medical Library was built in commemoration of the centenary.

Apr. The Institute of Medical Electronics was established.

1965 Apr. The Research Institute of Logopedics and Pediatrics was established. The School of Health Care and Nursing was reorganized as the School of Health Sciences. The Graduate School of The University of Tokyo was reorganized and the Division of Medical Doctor Biological Science became the Faculty of Medicine. The Health science Course was established in the Medical Science Division.
1966 Sep. The third building of the Faculty of Medicine was constructed.

1971 Apr. The Laboratory of Animal Experiments was established.

1973 Mar. The Animal Center for Biomedical Research was constructed.

1983 Jan. An annex of the third building of the Faculty of Medicine was constructed.

1985 Sep. The office of International Academic Affairs was established.

1987 Apr. Specialized courses were introduced to the Graduate School of Medicine.

1992 Apr. The School of Health Sciences became the School of Health Science and Nursing. The School of International Health was established in the Medical Science Division.

1995 Apr. As a result of the shift to the chair system of the Graduate School of Medicine, four divisions, Third Basic Medicine, Social Medicine, Third and Fourth Clinical Medicine, were replaced with Pathology, Immunology and Microbiology, Social Medicine, Reproduction and Development, and Aging Science and Surgery.

1996 Apr. As a result of the shift to the chair system of the Graduate School of Medicine, three divisions, First Clinical Medicine, Health Science, and International Health, were replaced with Internal Medicine, Health Science and Nursing, and International Health.

1997 Apr. As a result of the shift to the chair system of the Graduate School of Medicine, three divisions, First and Second Basic Medicine, and Second Clinical Medicine, were replaced with Molecular Cell Biology, Functional Biology, Radiology and Biomedical Engineering, and Neuroscience. As a result of the above-mentioned reorganization, three institutes, the Institute of Brain Research, the Institute of Medical Electronics, and the Institute of Logopedics and Phoniatrics were made redundant.

1999 Apr. The Master course of Medical Science was established in the Graduate School of Medicine. This course accepts graduates of all faculties except those from Schools of Medicine, Dentistry, and Veterinary Medicine.

2000 Apr. The International Research Center for Medical Education was established (A shared facility for education and research).

2001 Apr. The University Branch Hospital was united with the University Hospital.

2002 Mar. Nursing School and Midwives School was closed.

2003 Apr. The Center for Disease Biology and Integrative Medicine was established.

2004 Apr. All the National Universities owned by the Japanese Government became National University Corporations. and the University of Corporation.

2005 Mar. Experimental Building (Second Stage) was constructed.

2007 Apr. The School of Public Health was established. This school offers programs for Master of Public Health.

2008 May. The University of Tokyo Faculty of Medicine and the University of Tokyo Hospital celebrated their 150th anniversary.

2010 Apr. The School of Health Science and Nursing became the School of Integrated Health Sciences.

2011 Jan. The Museum of Health and Medicine was established.

2012 Apr. The Office for Research Ethics Support was established.

2013 Apr. The International Research Center for Medical Education became a facility of the Graduate School of Medicine.

2013 Oct. The Life Sciences Core Facility was established.

2015 Apr. The Office for Clinical Practice and Medical Education was established.
Graduate School of Medicine

Molecular Cell Biology

<table>
<thead>
<tr>
<th>Cell Biology and Anatomy</th>
<th>Cell Biology</th>
<th>Associate Professor</th>
<th>Yoosuke Takei</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structural Biology</td>
<td>Professor</td>
<td>Masahide Kikkawa</td>
</tr>
<tr>
<td></td>
<td>Structural Cell Biology</td>
<td>Associate Professor</td>
<td>Yoshimitsu Kanai</td>
</tr>
<tr>
<td></td>
<td>Cellular Neurobiology</td>
<td>Professor</td>
<td>Shigeo Okabe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biochemistry and Molecular Biology</th>
<th>Molecular Biology</th>
<th>Professor</th>
<th>Noboru Mizushima</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cellular Signaling</td>
<td>Professor</td>
<td>Hiroi Mano</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Associate Professor</td>
<td>Yoshihiro Yamashita</td>
</tr>
<tr>
<td></td>
<td>Physiological Chemistry and Metabolism</td>
<td>Professor</td>
<td>Hiroki Kurihara</td>
</tr>
</tbody>
</table>

Functional Biology

<table>
<thead>
<tr>
<th>Physiology</th>
<th>Integrative Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cellular and Molecular Physiology</td>
</tr>
<tr>
<td></td>
<td>Neurophysiology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pharmacology</th>
<th>Cellular and Molecular Pharmacology</th>
<th>Professor</th>
<th>Masamitsu Iino</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Systems Pharmacology</td>
<td>Professor</td>
<td>Hiroki Ueda</td>
</tr>
</tbody>
</table>

Pathology, Immunology and Microbiology

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Pathology and Diagnostic Pathology</th>
<th>Professor</th>
<th>Masahiko Fukayama</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Associate Professor</td>
<td></td>
<td>Tetsu Shikahara</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td></td>
<td>Tetsu Ushiku</td>
</tr>
<tr>
<td></td>
<td>Molecular Pathology</td>
<td>Professor</td>
<td>Kohei Miyazono</td>
</tr>
<tr>
<td></td>
<td>Surgical Pathology</td>
<td></td>
<td>Daizo Kinuma</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Microbiology</td>
<td>Professor</td>
<td>Masahiro Hatakeyama</td>
</tr>
<tr>
<td></td>
<td>Infection Control and Prevention</td>
<td>Professor</td>
<td>Kyoji Moriya</td>
</tr>
<tr>
<td>Immunology</td>
<td>Immunology</td>
<td>Professor</td>
<td>Hiroshi Takayanagi</td>
</tr>
<tr>
<td></td>
<td>Clinical Immunology</td>
<td></td>
<td>Takeshi Nitta</td>
</tr>
</tbody>
</table>

Collaborative Department: Tumor Pathology / Infection Pathology / Molecular Oncology

Radiology and Biomedical Engineering

<table>
<thead>
<tr>
<th>Radiology</th>
<th>Diagnostic Radiology</th>
<th>Professor</th>
<th>Kuni Otomo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Associate Professor</td>
<td></td>
<td>Satoshi Kunimatsu</td>
</tr>
<tr>
<td></td>
<td>Radiotherapy</td>
<td>Associate Professor</td>
<td>Keiichi Nakagawa</td>
</tr>
<tr>
<td></td>
<td>Nuclear Medicine</td>
<td>Associate Professor</td>
<td>Toshimatsu Momose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biomedical Engineering</th>
<th>System Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chemical Biology and Molecular Imaging</td>
</tr>
<tr>
<td></td>
<td>Biosystem Construction and Control</td>
</tr>
</tbody>
</table>

Neuroscience

<table>
<thead>
<tr>
<th>Basic Neuroscience</th>
<th>Neuropathology</th>
<th>Professor</th>
<th>Takeshi Iwatsubo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neurochemistry</td>
<td>Professor</td>
<td>Haruhiko Bito</td>
</tr>
<tr>
<td></td>
<td>Neurobiology</td>
<td>Professor</td>
<td>Kenzo Hirose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrative Medical Neuroscience</th>
<th>Developmental Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cognitive Neuroscience</td>
</tr>
<tr>
<td></td>
<td>Systems Medical Neuroscience</td>
</tr>
<tr>
<td></td>
<td>Child Neuropsychiatry</td>
</tr>
<tr>
<td>Clinical Neuroscience</td>
<td>Neuropsychiatry</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurology</td>
</tr>
<tr>
<td></td>
<td>Neurosurgery</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational, Environmental and Preventive Medicine</td>
</tr>
<tr>
<td>Molecular Preventive Medicine</td>
</tr>
<tr>
<td>Public Health</td>
</tr>
<tr>
<td>Medical Informatics and Economics</td>
</tr>
<tr>
<td>Forensic Medicine</td>
</tr>
</tbody>
</table>

| Internal Medicine |
| Medicine I |
Cardiovascular Medicine	Professor	Issei Komuro
Respiratory Medicine	Professor	Takahide Nagase
Gastroenterology	Professor	Kazuhiko Koike
Nephrology	Professor	Masaomi Nangaku
Medicine II		
Nutrition and Metabolism	Professor	Takashi Kadowaki
Hematology and Oncology	Professor	Mineo Kurokawa
Allergy and Rheumatology	Professor	Kazuhiko Yamamoto
Infectious Diseases	Associate Professor	Hiroshi Yotsuyanagi
Stress Science and Psychosomatic Medicine	Associate Professor	Kazuhiro Yoshiuchi

| Reproductive, Developmental and Aging Sciences |
| Obstetrics and Gynecology |
Reproductive Endocrinology	Professor	Tomoyuki Fujii
Gynecological Oncology	Associate Professor	Kei Kawana
Perinatal Medicine	Associate Professor	Katsutoshi Oda
Molecular Cellular Reproductive Medicine	Professor	Kaori Koga
Pediatric Sciences		
Pediatrics	Professor	Akira Oka
Developmental Pediatrics	Associate Professor	Junko Takita
Pediatric Surgery	Associate Professor	Sachiko Kitanaka
Pediatric Oncology	Associate Professor	Jun Fujishiro
Aging Sciences		
Geriatric Medicine	Professor	Masahiro Akishita
Aging Research	Professor	Sumito Ogawa
*Collaborative Department	Health Policy for Children and Families	
Surgical Sciences

<table>
<thead>
<tr>
<th>Division</th>
<th>Professor</th>
<th>Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracic Surgery</td>
<td>Jun Nakajima</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Surgery</td>
<td>Minoru Ono</td>
<td>Yasutaka Hirata</td>
</tr>
<tr>
<td>Gastrointestinal Surgery</td>
<td>Yasuuki Seto</td>
<td>Sachiyu Nomura</td>
</tr>
<tr>
<td>Hepatobiliary Pancreatic Surgery</td>
<td>Norihiro Kokudo</td>
<td>Kiyoshi Hasegawa</td>
</tr>
<tr>
<td>Urology</td>
<td>Yukio Homma</td>
<td>Haruki Kume</td>
</tr>
<tr>
<td>Artificial Organ and Transplantation Division</td>
<td>Yoshihiro Sakamoto</td>
<td></td>
</tr>
<tr>
<td>Surgical Oncology</td>
<td>Toshiaki Watanabe</td>
<td>Joji Kitayama</td>
</tr>
<tr>
<td>Vascular Surgery</td>
<td>Toshiaki Watanabe</td>
<td></td>
</tr>
<tr>
<td>Metabolic Care and Endocrine Surgery</td>
<td>Keiichiro Tada</td>
<td></td>
</tr>
<tr>
<td>Dermatology</td>
<td>Shinichi Sato</td>
<td>Makoto Sugaya</td>
</tr>
<tr>
<td>Plastic and Reconstructive Surgery</td>
<td>Isao Koshtina</td>
<td></td>
</tr>
<tr>
<td>Oral and Maxillofacial Surgery</td>
<td>Tsuyoshi Takato</td>
<td>Takafumi Susami</td>
</tr>
<tr>
<td>Orthopaedic Surgery</td>
<td>Saka Tanaka</td>
<td>Hirotaka Chikuda</td>
</tr>
<tr>
<td>Ophthalmology</td>
<td>Makoto Aihara</td>
<td>Satoshi Kato</td>
</tr>
<tr>
<td>Rehbitilation Medicine</td>
<td>Nobuhtiko Haga</td>
<td></td>
</tr>
<tr>
<td>Anesthesiology</td>
<td>Yoshitsugu Yamada</td>
<td>Kanji Uchida</td>
</tr>
<tr>
<td>Emergency and Critical Care Medicine</td>
<td>Naoki Yahagi</td>
<td>Yoichi Kitsuta</td>
</tr>
</tbody>
</table>

Health Sciences and Nursing

<table>
<thead>
<tr>
<th>Health Sciences</th>
<th>Associate Professor</th>
<th>Naoki Kondo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental Health</td>
<td>Norito Kawakami</td>
<td>Akihito Shimazu</td>
</tr>
<tr>
<td>Epidemiology and Preventive Health Sciences</td>
<td>Yutaka Matsuyama</td>
<td>Koji Oba</td>
</tr>
<tr>
<td>Health Education</td>
<td>Hideki Hashimoto</td>
<td></td>
</tr>
<tr>
<td>Health Promotion Sciences</td>
<td>Jung Su Lee</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>Akira Akabayaishi</td>
<td>Yosiyuki Takimoto</td>
</tr>
<tr>
<td>Advanced Clinical Nursing</td>
<td>Hiromi Sanada</td>
<td></td>
</tr>
<tr>
<td>Nursing Administration</td>
<td>Hiromi Sanada</td>
<td>Yukie Takemura</td>
</tr>
<tr>
<td>Family Nursing</td>
<td>Kiyoko Kamibeppu</td>
<td></td>
</tr>
<tr>
<td>Community Health Nursing</td>
<td>Satoko Nagata</td>
<td></td>
</tr>
<tr>
<td>Public Health Nursing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preventive and Administrative Nursing</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Health Nursing</td>
<td>Noriko Yamamoto-Mitani</td>
<td></td>
</tr>
<tr>
<td>Palliative Care Nursing</td>
<td>Noriko Yamamoto-Mitani</td>
<td></td>
</tr>
<tr>
<td>Midwifery and Women’s Health</td>
<td>Megumi Haruna</td>
<td></td>
</tr>
<tr>
<td>Psychiatric Nursing</td>
<td>Norito Kawakami</td>
<td>Hiromi Sanada</td>
</tr>
<tr>
<td>Gerontological Nursing</td>
<td>Hiromi Sanada</td>
<td></td>
</tr>
<tr>
<td>Wound Care Management</td>
<td>Hiromi Sanada</td>
<td></td>
</tr>
</tbody>
</table>

Sensory and Motor System Medicine

- **Health Promotion Sciences**
 - Mental Health
 - Epidemiology and Preventive Health Sciences
 - Health Education
 - Health Promotion Sciences
 - Biostatistics
 - Advanced Clinical Nursing
 - Nursing Administration
 - Family Nursing
 - Community Health Nursing
 - Public Health Nursing

- **Clinical Nursing**
 - Adult Health Nursing
 - Palliative Care Nursing
 - Midwifery and Women’s Health
 - Psychiatric Nursing
 - Gerontological Nursing
 - Wound Care Management
International Health

International Social Medicine

Global Health Policy
Professor Kenji Shibuya
Associate Professor Hiroshi Nishiura

Community and Global Health
Professor Masamine Jimba

International Biomedical Sciences

Human Genetics
Professor Katsushi Tokunaga
Associate Professor Akihiko Mabuchi

Developmental Medical Sciences
Professor Masashi Mizuguchi
Associate Professor Teruyuki Tanaka

Human Ecology
Professor Chiho Watanabe
Associate Professor Masahiro Umezaki

Biomedical Chemistry
Professor Kiyoshi Kita
Associate Professor Yoh-ichi Watanabe

School of Public Health

Epidemiology and Health Sciences

Biostatistics
Professor Yutaka Matsuyama
Associate Professor Koji Oba

Social and Preventive Epidemiology
Professor Satoshi Sasako

Clinical Epidemiology and Health Economics
Professor Hideo Yasunaga

Health Communication
Professor Takahiro Kiuchi
Associate Professor Hirono Ishikawa

Behavioral Health Sciences

Mental Health
Professor Norito Kawakami
Associate Professor Akihito Shimazu

Health Sociology and Health Education
Associate Professor Naoki Kondo

Health and Social Behavior
Professor Hideki Hashimoto

Health Promotion Sciences
Associate Professor Jung Su Lee

Biomedical Ethics
Professor Akira Akabayashi
Associate Professor Yoshiyuki Takimoto

Health Services Sciences

Health Policy
Professor Yasuki Kobayashi
Associate Professor Satosshi Toyokawa

Healthcare Informatics
Professor Kazuhiko Ohe

Clinical Information Engineering
Professor Hiroshi Oyama

Forensic Medicine and Medical Law
Professor(entrustment) Hirotaro Iwase

Center for Disease Biology and Integrative Medicine

Director Shigeo Okabe

Laboratory of Molecular Biomedicine for Pathogenesis
Professor Toru Miyazaki

Laboratory of Structural Physiology
Professor Haruo Kasai

Laboratory of Regenerative Medical Engineering
Associate Professor Taichi Ito

Laboratory of Clinical Biotechnology
Professor Kazunori Kataoka
Associate Professor Kanjiro Miyata

Laboratory of Environmental Health Sciences
Associate Professor Seiichiro Ohshako

Laboratory of Animal Resources
Professor Atsu Aiba
Associate Professor Kazuki Nakao

Laboratory of Molecular Radiology
Professor Kiyoshi Miyagawa

Divisions of Research Resources and Support

(Section of Animal Research)
Professor Atsu Aiba

(Section of Radiation Biology)
Professor Kiyoshi Miyagawa

(Section of Bioinfomatics)

The International Research Center for Medical Education

Director Kazuhiko Yamamoto

Department of Medical Education Studies
Professor Kiyoshi Kitamura

Department of International Cooperation for Medical Education

Institution

The Office of International Academic Affairs
Head Yasuyuki Seto

Medical Scientist Training Program
Head Haruhiko Bito

Office for Research Ethics Support
Director Yutaka Yatomi
Deputy Director Akira Akabayashi

Life Sciences Core Facility
Associate Professor Yoshihiro Kita

The Office for Clinical Practice and Medical Education
Professor Tatsuya Yamasoba

Medical Library
Head Tsuyoshi Takato

Museum of Health and Medicine
Head Kazuhiko Ohe
Endowed Department

<table>
<thead>
<tr>
<th>Department</th>
<th>Faculty Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Bone & Cartilage Regenerative Medicine</td>
<td>Associate Professor</td>
<td>Taku Saito</td>
</tr>
<tr>
<td>Department of Cartilage & Bone Regeneration (Fujisoft)</td>
<td>Associate Professor</td>
<td>Atsuhiko Hikita</td>
</tr>
<tr>
<td>Immunotherapeutics (Medinet)</td>
<td>Professor</td>
<td>Kazuhiro Kakimi</td>
</tr>
<tr>
<td>Total Renal Care Medicine</td>
<td>Associate Professor</td>
<td>Norio Hanafusa</td>
</tr>
<tr>
<td>Department of Advanced Clinical Science and Therapeutics</td>
<td>Associate Professor</td>
<td>Junichi Suzuki</td>
</tr>
<tr>
<td>Translational Research for Healthcare and Clinical Science</td>
<td>Associate Professor</td>
<td>Hiroyuki Morita</td>
</tr>
<tr>
<td>Department of Joint Disease Research</td>
<td>Associate Professor</td>
<td>Noriko Yoshimura</td>
</tr>
<tr>
<td>Health Management and Policy</td>
<td>Professor</td>
<td>Soichi Koike</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Ryuichi Yamamoto</td>
</tr>
<tr>
<td>Computational Diagnostic Radiology and Preventive Medicine</td>
<td>Professor</td>
<td>Naoto Hayashi</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Kansai Uno</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Takeharu Yoshikawa</td>
</tr>
<tr>
<td>Clinical Motor System Medicine</td>
<td>Associate Professor</td>
<td>Shigeyuki Muraki</td>
</tr>
<tr>
<td>Healthcare Safety Management (Tokio Marine & Nichido)</td>
<td>Professor</td>
<td>Yasushi Kodama</td>
</tr>
<tr>
<td>Department of Healthcare Quality Assessment</td>
<td>Professor</td>
<td>Hiroaki Miyata</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Shun Kohsaka</td>
</tr>
<tr>
<td>Anti-Aging Medicine</td>
<td>Professor</td>
<td>Satoshi Inoue</td>
</tr>
<tr>
<td>Clinical Epidemiology and Systems</td>
<td>Associate Professor</td>
<td>Daisuke Koide</td>
</tr>
<tr>
<td>Pharmacology and Pharmacokinetics</td>
<td>Associate Professor</td>
<td>Masashi Honma</td>
</tr>
<tr>
<td>Ubiquitous Preventive Medicine</td>
<td>Associate Professor</td>
<td>Yasushi Imai</td>
</tr>
<tr>
<td>Science for Joint Reconstruction</td>
<td>Professor</td>
<td>Yoshihiko Takatori</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Toru Moro</td>
</tr>
<tr>
<td>Therapeutic Strategy for Heart Failure</td>
<td>Professor</td>
<td>Koichiro Kinugawa</td>
</tr>
<tr>
<td>Molecular Structure and Dynamics (JEOL / Zeiss)</td>
<td>Professor</td>
<td>Nobutaka Hirokawa</td>
</tr>
<tr>
<td>Department of Medical Genomics</td>
<td>Associate Professor</td>
<td>CHOI Young Lim</td>
</tr>
<tr>
<td>Continence Medicine</td>
<td>Professor</td>
<td>Yasuhiko Igawa</td>
</tr>
<tr>
<td>Department of Molecular Psychiatry</td>
<td>Associate Professor</td>
<td>Kazuya Iwamoto</td>
</tr>
<tr>
<td>Department of Life Support Technology (Molten)</td>
<td>Associate Professor</td>
<td>Taketoshi Mori</td>
</tr>
<tr>
<td>Department of Youth Mental Health</td>
<td>Associate Professor</td>
<td>Tsuchyoshi Araki</td>
</tr>
<tr>
<td>Department of Advanced Nephrology and Regenerative Medicine</td>
<td>Associate Professor</td>
<td>Keiichi Hishikawa</td>
</tr>
<tr>
<td>AXA Chair on Health and Human Security</td>
<td>Professor</td>
<td>Manami Inoue</td>
</tr>
<tr>
<td>Department of Advanced Translational Research and Medicine in Management</td>
<td>Associate Professor</td>
<td>Hideki Takimoto</td>
</tr>
<tr>
<td>of Pulmonary Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Immunotherapy Management</td>
<td>Associate Professor</td>
<td>Hiroko Kanda</td>
</tr>
<tr>
<td>Chronic kidney disease pathophysiology</td>
<td>Associate Professor</td>
<td>Reiko Inagi</td>
</tr>
<tr>
<td>Department of medical research and management for musculoskeletal pain</td>
<td>Associate Professor</td>
<td>Koh Matsudaira</td>
</tr>
<tr>
<td>Department of Molecular Science on Diabetes</td>
<td>Professor</td>
<td>Kohjiro Ueki</td>
</tr>
</tbody>
</table>
Faculty of Medicine

School of Medicine

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biology and Anatomy</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>Pharmacology</td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
</tr>
<tr>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>Radiology</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>Basic Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Integrative Medical Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Clinical Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Occupational, Environmental and Preventive</td>
<td></td>
</tr>
<tr>
<td>Medicine / Medical Ethics</td>
<td></td>
</tr>
<tr>
<td>Forensic Medicine and Medical</td>
<td></td>
</tr>
<tr>
<td>Informatics and Economics</td>
<td></td>
</tr>
<tr>
<td>Medicine I / Medicine II</td>
<td></td>
</tr>
<tr>
<td>Medical Laboratory Pathology</td>
<td></td>
</tr>
<tr>
<td>Obstetrics and Gynecology</td>
<td></td>
</tr>
<tr>
<td>Pediatric Science</td>
<td></td>
</tr>
<tr>
<td>Aging Science</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
</tr>
<tr>
<td>Sensory and Motor System Medicine</td>
<td></td>
</tr>
<tr>
<td>Vital Care Medicine</td>
<td></td>
</tr>
<tr>
<td>Family Nursing</td>
<td></td>
</tr>
<tr>
<td>Community Health Nursing</td>
<td></td>
</tr>
<tr>
<td>Fundamental Nursing</td>
<td></td>
</tr>
<tr>
<td>Gerontological Nursing</td>
<td></td>
</tr>
<tr>
<td>Midwifery and Women’s Health</td>
<td></td>
</tr>
<tr>
<td>Adult Health and Nursing</td>
<td></td>
</tr>
<tr>
<td>Mental Health and Nursing</td>
<td></td>
</tr>
<tr>
<td>Health Sociology</td>
<td></td>
</tr>
<tr>
<td>Health Administration</td>
<td></td>
</tr>
<tr>
<td>Epidemiology and Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Human Ecology</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Nutrition</td>
<td></td>
</tr>
<tr>
<td>Maternal and Child Health</td>
<td></td>
</tr>
</tbody>
</table>

School of Integrated Health Sciences

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Nursing</td>
<td></td>
</tr>
<tr>
<td>Community Health Nursing</td>
<td></td>
</tr>
<tr>
<td>Fundamental Nursing</td>
<td></td>
</tr>
<tr>
<td>Gerontological Nursing</td>
<td></td>
</tr>
<tr>
<td>Midwifery and Women’s Health</td>
<td></td>
</tr>
<tr>
<td>Adult Health and Nursing</td>
<td></td>
</tr>
<tr>
<td>Mental Health and Nursing</td>
<td></td>
</tr>
<tr>
<td>Health Sociology</td>
<td></td>
</tr>
<tr>
<td>Health Administration</td>
<td></td>
</tr>
<tr>
<td>Epidemiology and Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Human Ecology</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Nutrition</td>
<td></td>
</tr>
<tr>
<td>Maternal and Child Health</td>
<td></td>
</tr>
</tbody>
</table>

Research Unit

Graduate Program for Leaders in Life Innovation

<table>
<thead>
<tr>
<th>Program</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurturing leaders to pave the way for the future</td>
<td></td>
</tr>
<tr>
<td>Medicine, Medical innovation initiative</td>
<td>Keiji Itaka</td>
</tr>
</tbody>
</table>

Nurturing leaders to pave the way for the future of medicine

<table>
<thead>
<tr>
<th>Program</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurturing leaders to pave the way for the future</td>
<td></td>
</tr>
<tr>
<td>Medicine, Medical innovation initiative</td>
<td>Makoto Yoshimoto</td>
</tr>
</tbody>
</table>

AIM Research Project: Large cohort study of human AIM

<table>
<thead>
<tr>
<th>Program</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM Research Project: Large cohort study of human</td>
<td></td>
</tr>
<tr>
<td>AIM, Medical innovation initiative</td>
<td>Satoko Arai</td>
</tr>
</tbody>
</table>

Social Cooperation Program

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Ubiquitous Health Informatics</td>
<td>Kayo Wákita</td>
</tr>
<tr>
<td>Department of Lipidomics</td>
<td>Takao Shimizu</td>
</tr>
<tr>
<td>Functional Regulation of Adipocytes</td>
<td>Hironori Waki</td>
</tr>
<tr>
<td>Advanced Nursing Technology</td>
<td>Ryoko Murayama</td>
</tr>
<tr>
<td>Verbal analysis of pathophysiology</td>
<td>Shinichi Tokuno</td>
</tr>
<tr>
<td>Department of Internal Medicine</td>
<td>Professor</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>General Medicine</td>
<td>Mineo Kurokawa</td>
</tr>
<tr>
<td>Cardiovascular Medicine</td>
<td>Issei Komuro</td>
</tr>
<tr>
<td>Respiratory Medicine</td>
<td>Takahide Nagase</td>
</tr>
<tr>
<td>Gastroenterology</td>
<td>Kazuhiko Koike</td>
</tr>
<tr>
<td>Nephrology and Endocrinology</td>
<td>Masaoami Nangaku</td>
</tr>
<tr>
<td>Metabolic Diseases</td>
<td>Takashi Kadowaki</td>
</tr>
<tr>
<td>Hematology and Oncology</td>
<td>Mineo Kurokawa</td>
</tr>
<tr>
<td>Allergy and Rheumatology</td>
<td>Kazuhiko Yamamoto</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>Hiroshi Yotsuyanagi</td>
</tr>
<tr>
<td>Neurology</td>
<td>Shoji Tsuji</td>
</tr>
<tr>
<td>Geriatric Medicine</td>
<td>Masahiro Akishita</td>
</tr>
<tr>
<td>Psychosomatic Medicine</td>
<td>Akira Akabayashi</td>
</tr>
<tr>
<td>General Surgery</td>
<td>Norihiro Kokudo</td>
</tr>
<tr>
<td>Stomach and Esophageal Surgery</td>
<td>Yassuyuki Seto</td>
</tr>
<tr>
<td>Colon and Rectal Surgery</td>
<td>Toshiaki Watanabe</td>
</tr>
<tr>
<td>Hepatobiliary Pancreatic Surgery</td>
<td>Norihiro Kokudo</td>
</tr>
<tr>
<td>Vascular Surgery</td>
<td>Toshiaki Watanabe</td>
</tr>
<tr>
<td>Breast and Endocrine Surgery</td>
<td>Keiichiro Tada</td>
</tr>
<tr>
<td>Artificial Organ and Transplantation Surgery</td>
<td>Norihiro Kokudo</td>
</tr>
<tr>
<td>Cardiovascular Surgery</td>
<td>Minoru Ono</td>
</tr>
<tr>
<td>Thoracic Surgery</td>
<td>Jun Nakajima</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>Nobuhito Saito</td>
</tr>
<tr>
<td>Anesthesiology and Pain Relief Center</td>
<td>Yoshitsugu Yamada</td>
</tr>
<tr>
<td>Urology and Andrology</td>
<td>Yukio Homma</td>
</tr>
<tr>
<td>Gynecologic Surgery</td>
<td>Yutaka Osuga</td>
</tr>
<tr>
<td>Dermatology and Photolaser Medicine</td>
<td>Shinichi Sato</td>
</tr>
<tr>
<td>Ophthalmology and Vision Correction</td>
<td>Makoto Sugaya</td>
</tr>
<tr>
<td>Orthopaedic Surgery and Spinal Surgery</td>
<td>Makoto Aihara</td>
</tr>
<tr>
<td>Otorhinolaryngology, and Auditory and Voice Surgery</td>
<td>Satoshi Kato</td>
</tr>
<tr>
<td>Otorhinolaryngology, and Auditory and Voice Surgery</td>
<td>Sakae Tanaka</td>
</tr>
<tr>
<td>Otalaryngology and Voice Surgery</td>
<td>Hirotaha Chikuda</td>
</tr>
<tr>
<td>Rehabilitation Medicine</td>
<td>Tatsuya Yamasoba</td>
</tr>
<tr>
<td>Plastic, Reconstrucive and Aesthetic Surgery</td>
<td>Shinichi Iwasaki</td>
</tr>
<tr>
<td>Oral-Maxillofacial Surgery, Dentistry and Orthodontics</td>
<td>Akinobu Kakigi</td>
</tr>
<tr>
<td>Professor</td>
<td>Nobuhiko Haga</td>
</tr>
<tr>
<td>Isao Koshima</td>
<td>Isao Koshima</td>
</tr>
<tr>
<td>Professor</td>
<td>Tsuyoshi Takato</td>
</tr>
<tr>
<td>Professor</td>
<td>Takafumi Susami</td>
</tr>
<tr>
<td>Professor</td>
<td>Kazuto Hoshi</td>
</tr>
</tbody>
</table>

Department of Surgery

<table>
<thead>
<tr>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
</tr>
</tbody>
</table>

Department of Sensory and Motor System Medicine

<table>
<thead>
<tr>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
</tr>
</tbody>
</table>

Director Nobuhito Saito
Department of Pediatrics, Perinatal and Women's Medicine

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Professor</th>
<th>Associate Professor</th>
<th>Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatrics</td>
<td>Professor</td>
<td>Akira Oka</td>
<td>Sachiko Kitanaka</td>
</tr>
<tr>
<td>Pediatrics</td>
<td>Associate Professor</td>
<td>Junko Takita</td>
<td></td>
</tr>
<tr>
<td>Pediatric Surgery</td>
<td>Associate Professor</td>
<td>Jun Fujishiro</td>
<td></td>
</tr>
<tr>
<td>Obstetrics and Gynecology</td>
<td>Professor</td>
<td>Tomoyuki Fujii</td>
<td></td>
</tr>
</tbody>
</table>

Department of Neuropsychiatry

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Professor</th>
<th>Associate Professor</th>
<th>Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropsychiatry</td>
<td>Professor</td>
<td>Kiyoto Kasai</td>
<td>Chihiro Kakiuchi</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Hidenori Yamase</td>
<td></td>
</tr>
</tbody>
</table>

Department of Radiology

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Professor</th>
<th>Associate Professor</th>
<th>Associate Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiology</td>
<td>Professor</td>
<td>Kuni Otomo</td>
<td>Keiichi Nakagawa</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Toshimitsu Momose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Akira Kunimatsu</td>
<td></td>
</tr>
</tbody>
</table>

Central Clinical Facilities

<table>
<thead>
<tr>
<th>Department</th>
<th>Professor</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Department</td>
<td>Professor</td>
<td>Hiroshi Suzuki</td>
</tr>
<tr>
<td>Clinical Laboratory</td>
<td>Professor</td>
<td>Yutaka Yatomi</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Hitoshi Ikeda</td>
</tr>
<tr>
<td>Operation Center</td>
<td>Professor</td>
<td>Hiroshi Yasuhara</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Kazuhiko Fukatsu</td>
</tr>
<tr>
<td>Imaging Center</td>
<td>Professor and Director</td>
<td>Kuni Otomo</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>Professor</td>
<td>Naoki Yahagi</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Yoichi Kitsuta</td>
</tr>
<tr>
<td>Department of Blood Transfusion</td>
<td>Professor</td>
<td>Hitoshi Okazaki</td>
</tr>
<tr>
<td>Perinatal Center</td>
<td>Professor</td>
<td>Tomoyuki Fujii</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Naoto Takahashi</td>
</tr>
<tr>
<td>Rehabilitation Service</td>
<td>Professor</td>
<td>Nobuhiko Haga</td>
</tr>
<tr>
<td>Department of Medical Engineering</td>
<td>Associate Professor</td>
<td>Kazuhiko Fukatsu</td>
</tr>
<tr>
<td>Central Supply Service</td>
<td>Professor</td>
<td>Naoki Yahagi</td>
</tr>
<tr>
<td>Intensive Care Unit</td>
<td>Associate Professor</td>
<td>Masashi Fukayama</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Junji Shibahara</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Takeshi Sasaki</td>
</tr>
<tr>
<td>Pathology</td>
<td>Professor</td>
<td>Masaoi Nangaku</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Eisei Noiri</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Mitsuhiro Fujishiro</td>
</tr>
<tr>
<td>Department of Corneal Transplantation</td>
<td>Associate Professor</td>
<td>Mineo Kurokawa</td>
</tr>
<tr>
<td>Department of Cell Therapy and Transplantation Medicine</td>
<td>Associate Professor</td>
<td>Mitsuhiro Fujishiro</td>
</tr>
<tr>
<td>Department of Endoscopy and Endoscopic Surgery</td>
<td>Associate Professor</td>
<td>Masaomi Nangaku</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Eisei Noiri</td>
</tr>
<tr>
<td>Department of Hemo dialysis and Apheresis</td>
<td>Professor</td>
<td>Kiyoto Kasai</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Kyoji Moriya</td>
</tr>
<tr>
<td>Medical Community Network and Discharge Planning</td>
<td>Professor</td>
<td>Kazuhiko Ohe</td>
</tr>
<tr>
<td>Infection Control and Prevention Service</td>
<td>Professor</td>
<td>Kyoji Moriya</td>
</tr>
<tr>
<td>Department of Planning, Information and Management</td>
<td>Associate Professor</td>
<td>Kazuhiko Ohe</td>
</tr>
<tr>
<td>University Hospital Medical Information Network Center</td>
<td>Professor</td>
<td>Takahiro Kiuchi</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Hiroko Ishikawa</td>
</tr>
<tr>
<td>Organ Transplantation Service</td>
<td>Professor</td>
<td>Norihiro Kokudo</td>
</tr>
<tr>
<td>Labor Safety and Health Management Office</td>
<td>Associate Professor</td>
<td>Yukiko Kano</td>
</tr>
<tr>
<td>Child Psychiatry</td>
<td>Associate Professor</td>
<td>Sumihito Tamura</td>
</tr>
<tr>
<td>Tissue Bank</td>
<td>Professor</td>
<td>Tsutomu Yamazaki</td>
</tr>
<tr>
<td>Epidemiology and Preventive Medicine</td>
<td>Associate Professor</td>
<td>Sachio Nomura</td>
</tr>
<tr>
<td>Cancer Resource Center</td>
<td>Professor</td>
<td>Toshiaki Watanabe</td>
</tr>
<tr>
<td>Center for Liaison and Public Relations</td>
<td>Professor</td>
<td>Norihiro Kokudo</td>
</tr>
<tr>
<td>Department of Chemo therapy</td>
<td>Professor</td>
<td>Toshiaki Watanabe</td>
</tr>
<tr>
<td></td>
<td>Professor</td>
<td>Kazuhiko Ohe</td>
</tr>
<tr>
<td>Department of Medical Record Management</td>
<td>Professor</td>
<td>Toshiaki Watanabe</td>
</tr>
<tr>
<td></td>
<td>Professor</td>
<td>Kazuhiko Ohe</td>
</tr>
<tr>
<td>Critical Care Center</td>
<td>Associate Professor</td>
<td>Susumu Nakajima</td>
</tr>
<tr>
<td>Department of Palliative Medicine</td>
<td>Associate Professor</td>
<td>Masaaki Simitani</td>
</tr>
<tr>
<td>Children's Medical Center</td>
<td>Professor</td>
<td>Akira Oka</td>
</tr>
<tr>
<td></td>
<td>Associate Professor</td>
<td>Jun Fujishiro</td>
</tr>
<tr>
<td>Department of Disaster Medical Management</td>
<td>Professor</td>
<td>Masaomi Nangaku</td>
</tr>
</tbody>
</table>
Clinical Research Division

<table>
<thead>
<tr>
<th>Organization of Clinical Management Support</th>
<th>Professor</th>
<th>Tsutomu Yamazaki Takashi Moritoyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Research Support Center</td>
<td>Professor</td>
<td>Takashi Moritoyo</td>
</tr>
<tr>
<td>22nd Century Medical and Research Center</td>
<td>Professor</td>
<td>Tsuyoshi Takato</td>
</tr>
<tr>
<td>Department of Tissue Engineering</td>
<td>Professor</td>
<td>Tsuyoshi Takato Kazuto Hoshi</td>
</tr>
<tr>
<td>Cooperative Unit of Medicine and Engineering Research</td>
<td>Professor</td>
<td>Minoru Ono</td>
</tr>
<tr>
<td>Translational Research Center</td>
<td>Professor</td>
<td>Mineo Kurokawa</td>
</tr>
<tr>
<td>Center for Genome Medicine</td>
<td>Professor</td>
<td>Shoji Tsuji</td>
</tr>
<tr>
<td>Unit for Early and Exploratory Clinical Development</td>
<td>Professor</td>
<td>Takeshi Iwatsubo Takashi Moritoyo</td>
</tr>
</tbody>
</table>

Organization of Clinical Management Support

<table>
<thead>
<tr>
<th>Department of Personnel Administration and Human Resource Management</th>
<th>Professor</th>
<th>Masahiro Akishita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Specialists Training Center</td>
<td>Professor</td>
<td>Shinichi Sato</td>
</tr>
<tr>
<td>Office of Performance Monitoring</td>
<td>Professor</td>
<td>Susumu Nakajima</td>
</tr>
<tr>
<td>Medical Safety management Center</td>
<td>Professor</td>
<td>Kyoji Moriya</td>
</tr>
<tr>
<td>Infection Control Center</td>
<td>Professor</td>
<td>Yoshiyuki Takemoto</td>
</tr>
<tr>
<td>Patient Relations and Clinical Ethics Center</td>
<td>Professor</td>
<td>Shinichi Sato Masato Eto</td>
</tr>
<tr>
<td>Department of Education and Staff Development</td>
<td>Professor</td>
<td>Kiyoshi Kitamura Tatuya Yamasoba</td>
</tr>
<tr>
<td>General Education Center</td>
<td>Professor</td>
<td>Kiyoto Kasai</td>
</tr>
<tr>
<td>Hospitality Center</td>
<td>Professor</td>
<td>Sakae Tanaka</td>
</tr>
<tr>
<td>Department of Hospital Planning and Management</td>
<td>Professor</td>
<td>Masaomi Nangaku</td>
</tr>
<tr>
<td>Department of Research Support</td>
<td>Professor</td>
<td>Masaomi Nangaku</td>
</tr>
</tbody>
</table>

Organization of Clinical Management

<table>
<thead>
<tr>
<th>Inpatient Services Administration</th>
<th>Professor</th>
<th>Sakae Tanaka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient Center</td>
<td>Professor</td>
<td>Kiyoshi Miyagawa</td>
</tr>
<tr>
<td>Cancer Board</td>
<td>Professor</td>
<td>Kiyoto Kasai</td>
</tr>
<tr>
<td>Outpatient Services Administration</td>
<td>Professor</td>
<td>Masahiko Sumitani</td>
</tr>
<tr>
<td>Central Clinical Services Administration</td>
<td>Associate Professor</td>
<td>Masaomi Nangaku</td>
</tr>
<tr>
<td>Vascular Board</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Faculty of Medicine
Graduate School of Medicine
The University of Tokyo

Graduate School of Medicine

Molecular Cell Biology ... 14
Functional Biology .. 17
Pathology, Immunology and Microbiology 19
Radiology and Biomedical Engineering 21
Neuroscience ... 23
Social Medicine .. 26
Internal Medicine .. 28
Reproductive, Developmental and Aging Sciences 32
Surgical Sciences ... 35
Health Sciences and Nursing 42
International Health .. 46
School of Public Health .. 49
Center for Disease Biology and Integrative Medicine .. 53

The International Research Center for Medical Education .. 56

Institution

The Office of International Academic Affairs
Medical Scientist Training Program
Office for Research Ethics Support
Life Sciences Core Facility
The Office for Clinical Practice and Medical Education
Medical Library
Museum of Health and Medicine

57
Cell Biology and Anatomy

Cells transport various kinds of proteins, lipids and mRNAs after synthesis to their specific destinations such as several types of membranous organelles, protein complexes and the mRNA complex. Thus, intracellular transport is fundamental to cellular functions, survival and morphogenesis. Our laboratory is studying the mechanisms of intracellular transport and cellular morphogenesis, especially focusing on molecular motors, Kinesin superfamily proteins (KIFs) and microtubule associated proteins (MAPs) using molecular cell biology, biophysics, structural biology, and molecular genetics.

- Molecular cell biological study of KIFs
- Studies of the mechanism for recognition of and binding to cargoes by KIFs and the regulation of this mechanism
- Studies of the mechanisms of differential directional transports and sorting
- Studies of the dynamics and mechanism of motility of KIFs using molecular biophysics and structural biology
- Molecular genetics of KIFs
- Studies of KIFs and related diseases
- Molecular cell biology and molecular genetics of MAPs

Structural Biology

Kikkawa lab is interested in flagella/cilia, which works as a propeller as well as a sensor of cells. We are studying the regulatory mechanism of flagella/cilia using cryo-electron microscopy, optical microscopy with high-speed camera, cell biology, and genetics. We are also developing new technologies to analyze images taken by the microscopes.

Our focuses are:
- Molecular mechanisms of flagella and axonemal dyneins
- Structures of microtubule-associated proteins
- Development of new image analysis methods for cryo-electron microscope and high-speed camera

The 3D structures of axoneme visualized by cryo-electron tomography. Below is the diagram of corresponding “ruler” proteins.
Structural Cell Biology

Our research aims to elucidate the cellular architecture, especially focusing on the cytoskeleton by combining molecular cell biology, molecular genetics and structural biology.

- Structure of the cytoskeleton and the related proteins
- Dynamics of the cytoskeleton and the related proteins
- Function of the cytoskeleton and the related proteins

Cellular Neurobiology

The Laboratory of Cellular Neurobiology is interested in understanding the molecular mechanisms regulating synapse formation and maintenance, which are essential in proper function of neural circuits in the brain. The laboratory is using optical imaging of synaptic molecules in live neurons, in combination with molecular biological approaches to modify neuronal functions.

- Molecular architecture of the postsynaptic density
- Molecular mechanisms of activity-dependent synapse remodeling
- Regulation of synapse functions by glial cells
- Regulation of synapse formation and maintenance in vivo
- Synapse dysfunction in psychiatric diseases

Molecular Biology

Our laboratory has been doing trans-disciplinary studies on autophagy, an intracellular degradation system, and trying to understand the mechanisms and biological and pathophysiological functions of autophagy.

- Molecular mechanism of autophagy (its regulation, membrane dynamism, selectivity, etc.)
- Physiological and pathophysiological roles of autophagy
- Development of new methods for monitoring and modulating autophagy
Cellular Signaling

Through a combined approach of our original functional screening system and cancer-genome resequencing, we aim to identify essential growth drivers in human cancer and to develop effective means to treat this intractable disorder. Our research is conducted in a tight collaboration with Department of Medical Genomics.

- Discovery of genetic changes directly responsible for carcinogenesis
- Identification of therapeutic targets in human cancer
- Development of novel molecular diagnostics for cancer

Physiological Chemistry and Metabolism

We are investigating signaling mechanisms underlying cell fate determination, morphogenesis and organogenesis in embryonic development.

- Molecular mechanisms of neural crest fate determination and craniofacial morphogenesis
- Molecular mechanisms of cardiovascular development
- Molecular mechanisms of stress responses in preimplantation development
- Roles of non-coding RNA in embryonic development
Functional Biology

Neurophysiology

Our laboratory studies the function of the synapse, a key structure for brain functions, and its changes related to postnatal development, learning, and memory. We monitor neural activity in real time using various methodologies including; electrophysiology, molecular biology, and optical imaging of functional molecules.

- Postnatal development of synaptic function and organization in the cerebellum
- Retrograde synaptic modulation mediated by endogenous cannabinoids
- Synaptic integration in intact animals
- Synaptic plasticity and motor learning in the cerebellum

Cellular and Molecular Pharmacology

We are studying the basic principles of Ca^{2+} signaling, the fundamental signal transduction mechanism of life. Based on such studies, we are searching for new functions of Ca^{2+} signaling in the central nervous system, and are aiming at shedding new light on brain functions using innovative imaging methods.

- Elucidation of basic principles of Ca^{2+} signaling
- Search for new functions of Ca^{2+} signaling in the brain
- Functional analyses of neurons and glial cells using imaging methods of signaling molecules
Systems Pharmacology

We are aiming at understanding of how multi-stability and homeo-dynamics in sleep-wake systems, as a model system, can be achieved through negative feedback regulation of membrane potential in neurons, and neural circuit structures. Also, we are establishing a high-throughput production platform of genetically engineered mice to facilitate a quantitative analysis and perturbation at the organismal level, and paving the way for the basic research by associating with human genome analysis obtained from clinical studies.

- Elucidation of the regulatory principle of sleep-wake rhythm
- High-throughput production platform of genetically engineered mice
- Application of human genome analysis from clinical studies to basic research
Pathology, Immunology and Microbiology

Pathology and Diagnostic Pathology

We investigate the pathogenesis and pathobiology of diseases, especially the neoplastic diseases, by means of morphology. Our goal is to discover new entities and to clarify unknown pathogenesis of diseases through the interaction with clinical medicine.

- Chronic inflammation and cancer
 - Epstein-Barr virus associated gastric carcinoma
 - Cancer epigenetics (DNA methylation, microRNA)
 - Stem cell and epithelial-mesenchymal interaction
 - Cancer classification for individualized medicine (stomach, liver, genito-urinary tract, lung)
- Application of molecular pathology to diagnostic pathology
 - Genome pathology, clinical sequencing
 - Discovery of molecular target for cancer therapy
 - Proteome pathology
- Next generation diagnostic pathology
 - Tele-pathology, digital pathology
 - Promotion of CPC education

Molecular Pathology

We study signaling mechanisms of the TGF-β family proteins, and elucidate how they regulate progression of cancers. Mechanisms of regulation of TGF-β-Smad target genes will be studied by genome-wide approaches. Based on these findings, we will develop new strategies for the treatment of cancer.

- Dynamic changes in the transcriptional machinery regulated by TGF-β
- Roles of TGF-β in epithelial-mesenchymal transition (EMT)
- Effects of TGF-β family cytokines on cancer-initiating cells

Signaling by TGF-β (left) and TGF-β-mediated EMT of mammary epithelial cells (right)
Microbiology
http://www.microbiol.m.u-tokyo.ac.jp/

Our major objective is to elucidate molecular mechanisms underlying development of gastric carcinoma triggered by infection with *Helicobacter pylori*. Based on the results obtained from these studies, we are also developing new strategies for prevention and treatment of infection/inflammation-associated cancers, which account for ~ 50% of entire human malignancies.

- Structural biological analysis of *H. pylori* oncoprotein CagA
- Intracellular signaling pathways targeted by CagA
- Mouse genetic studies on gastric carcinogenesis
- Host genetic factors determining gastric cancer susceptibility
- Molecular mechanisms linking inflammation and cancer

Infection Control and Prevention

We are engaged in education of medical staff as well as in daily clinical activities on the prevention of healthcare-associated infection (HAI). Research activities on the pathogenesis of infection with hepatitis viruses and HIV, in particular, on the mechanism of hepatocarcinogenesis in HCV infection are also our mission.

- Development of preemptive strategies for the control of healthcare-associated infection
- Development of new methods in infection control and treatment of viral hepatitis
- Molecular pathogenesis of hepatocellular carcinoma in HCV infection
- Pathogenesis of progression of HIV infection
- Molecular pathogenesis of the mitochondrial disturbances in viral infections
- Molecular pathogenesis of hepatitis B viral infection
- Host defences to microorganisms
- Molecular analysis of innate immunity in microorganism infection
- New detection method and pathogenesis of opportunistic cytomegaloviral infection
- Mechanism of multi-drug resistant microorganisms
- Molecular epidemiology of *Clostridium difficile*

Immunology
http://www.immunol.m.u-tokyo.ac.jp/english

We aim to comprehensively understand immune responses by analyzing molecular mechanisms of the development of immune cells and the regulation of innate and adaptive immune systems, and to provide novel strategies for the treatment of immune diseases. We focus on the molecules and immune cells that contribute to autoimmune diseases, employing genetically modified mice to address their physiological significance in vivo.

- The development of lymphoid tissues and immune cells
- The mechanisms and pathogenesis of autoimmune diseases
- Interplay between the immune and bone systems
Chemical Biology and Molecular Imaging

Our research field is so-called chemical biology. One of our main research interests is to develop novel small molecule-based photo-functional tools for biological and medical research, including fluorescence probes for detecting various events in living cells and animals. Recently, we have succeeded to develop fluorescence probes for in vivo tumor detection, and they are now applied to real resected human samples by collaborating with many surgeons.

- Establishment of rational design strategies for various photo-functional small molecule-based probes
- Development of novel fluorescence probes, photosensitizing probes and caged compounds, and their application to various living biological samples
- In vivo detection and therapy of tumors in model mice and real human samples by using rationally designed novel fluorescence and photosensitizing probes

Radiology

We have been performing a variety of clinically oriented research programs in biomedical imaging, voxel-based or ROI-based analysis, information analysis and radiotherapy, such as computer-assisted diagnosis (CAD), PET-based diagnosis, and intensity modulated radiotherapy (IMRT).

- Diagnostic Radiology
 - Multi-row detector (up to 16 rows) helical computed tomography
 - MR imaging, MR digital subtraction angiography, perfusion imaging, and diffusion tensor imaging/tractography
- Radiation Oncology
 - Physical engineering aspect of radiotherapy
 - Stereotactic irradiation by gamma knife and synergy system and IMRT
 - Clinical and biological studies for reduction of radiation-induced damage
- Nuclear Medicine
 - Functional imaging by radioisotope-labeled tracer technology
 - Evaluation of blood flow, metabolism, synaptic function and aggregated proteins (amyloid, tau etc.) by emission tomography (PET and SPECT)
 - Research and development of targeted radionuclide tumor therapy

http://cbmi.m.u-tokyo.ac.jp/

http://www.ut-radiology.umin.jp/
Biosystem Construction and Control

Our research fields include medical engineering technologies represented by the artificial organs. Especially in the research of the artificial heart, the goat whose heart was replaced with the new type of the total artificial heart survived for more than three months. To rescue the life of cardiopulmonary arrest patients, the compact emergency life support system has been developed. Other than these, researchs and developments of bio-compatible materials, sensors, new diagnostic devices and an application of the information and communications technology have been performed.

- Artificial heart
- Emergency life support system
- Hybrid technology of biological and artificial materials
- New blood pumps
- Implantable pressure sensor
- Implantable angiogenesis observation probe
- Application of the information and communications technology
Neuroscience

Neuropathology
Elucidate the pathomechanism of neuronal degeneration and death in major neurodegenerative disorders (e.g., Alzheimer disease, Parkinson disease), and develop novel strategies for disease-modifying therapies.

- Structural and functional analysis of γ-secretase
- Molecular analysis of the mode of action of γ-secretase inhibitors
- Mechanism of Aβ production, aggregation and clearance
- Pathological function of β-amyloid binding proteins (e.g., CLAC)
- Mechanism of aggregation and neurotoxicity of α-synuclein
- Pathological function of familial Parkinson disease gene LRRK2
- Strategies for development and validation of disease modifying therapies for Alzheimer disease (J-ADNI Clinical Study)

Phosphorylated α-synuclein deposited in Lewy bodies of Parkinson’s disease and Lewy body disease

Neurochemistry
Our brain is able to recognize and memorize external and internal events as they occur. A functional neural network further stands out by its capacity to extract patterns and rules, and to associate them with abstract meaning and affective valence. What are the local and global spectra of the molecular signaling events in neurons that underlie such complex information processing at the systems level? Are these events, in turn, converted into more profound modifications of the synaptic wiring mechanisms? To address these issues, we are currently investigating the chemistry and physiology of various neuronal protein complexes near and at synapses.

- Molecular investigation (including identification, characterization, optical manipulation and real-time visualization) of signaling molecules involved in activity-dependent modification of synapse, gene expression and neural circuit formation.
- Understanding molecular and circuit mechanisms controlling memory and emotional behaviors, through integration of state-of-the-art in vitro and in vivo neurobiological techniques in molecular optogenetics/imaging, genetical circuit tracing, and quantitative and behavioral experiments in combination with genetically modified mice and gene transfer using viral vectors.

http://www.neurochem.m.u-tokyo.ac.jp/Homepage.html

A. Single-synapse imaging (left) and frequency-number response profile (right) of CaMKIIa and calcineurin
B. Visualization of migrating neurons (green) and radial glial fibers (red) during corticogenesis
C. Novel object recognition task
Neurobiology

The goal of our research is to elucidate regulation mechanisms of various cell functions. Toward this goal, we have been developing novel technologies including live cell imaging and RNAi technologies.

- Development of novel strategy for generating fluorescent probes for live cell imaging
- We develop a high-throughput screening system for constructing high performance fluorescent probes for live cell imaging.
- Study of synapse physiology by glutamate imaging technique
- To clarify the dynamics of exocytosis in excitatory synapses, we have tried to quantitatively analyze released glutamate at individual synapses by using our original optical glutamate probe.
- Novel technology for construction of genome-wide RNAi library
- We are currently constructing a high performance genome-wide RNAi library based on our EPRIL technology.

Child Neuropsychiatry

Main diseases of our current research are autism spectrum disorder (ASD), ADHD, Tourette syndrome and childhood Obsessive-compulsive disorder (OCD). From the viewpoint of development of brain and mind, we are trying to investigate pathogenesis of these diseases by integrating phenomenological, neuropsychological, brain-imaging and genetic studies. We are also applying this integrative approach to treatment research for patients with these diseases.

- Behavior phenotype, neuropsychological and genetic study of Tourette syndrome and childhood OCD
- Brain-imaging study of ASD, ADHD and Tourette syndrome structural-MRI, functional-MRI and near-infrared spectroscopy
- Genomic and epigenomic analysis of ASD and Tourette syndrome
- Development of predictor of pharmacotherapy and parent training for ADHD
- Effectiveness study of early intervention for autistic preschoolers and group cognitive behavior therapy for adults with ASD

Neuropsychiatry

Our department mainly investigates schizophrenia and autistic spectrum disorders not only by biological approaches which integrate neuroimaging, genetic and animal studies, but also by psycho-social approaches. We also promote the systematic clinical research training programs and the cooperation with the basic neuroscience research.

- Multimodal neuroimaging studies of autistic spectrum disorders
- Clinical trials to establish the medical equipment as a clinical test useful for the pharmacological treatment of mental disorders
Neurology

Our Department is conducting research programs to elucidate the pathophysiological mechanisms of neurological diseases including neurodegenerative diseases, immune-mediated diseases and neuromuscular diseases, and to establish new therapeutic approaches for these diseases. We are also providing excellent training programs to become a board-certified neurologist.

- Molecular Genetics (identification of disease genes and development of therapeutic approaches)
- Molecular pathophysiology of neurological diseases (protein structures and functions)
- Immune-mediated diseases (autoantibodies)
- Neurophysiology and cognitive neuroscience (magnetic stimulation, NIRS, MEG, PET, and fMRI)
- Neuropathology of neuromuscular diseases (pathological studies on biopsy and autopsy materials)
- Multicenter-based clinical research

http://square.umin.ac.jp/neurotky/

Neurosurgery

The 21st century has been designated as “The Century of the Brain”. To lead Japanese surgical neuroscience, we have devoted our activities to the following: advanced clinical neurosurgery, neuroscience research and graduate and postgraduate education.

- Skull base surgery in managing benign or malignant skull base tumors and cerebrovascular disorders
- Functional neurosurgery including epilepsy surgery
- Development of new therapeutic strategies for malignant brain tumors
- Clinical study on gamma-knife surgery
- Application of brain functional imaging for neurosurgery
- Application of VR technology for surgical simulation
- Experiment on cerebral ischemia
- Development of new stenting device for endovascular surgery

http://www.h.u-tokyo.ac.jp/neurosurg/
Molecular Preventive Medicine

The immune system is maintained by continuous migration of immune cells between lymphoid organs and peripheral tissues. Immune cells change their function during this migration and interact with tissue cells at the periphery. In the context of disease, immune cells induce functional changes, destruction, and remodeling of affected tissues. We aim to clarify how immune cell migration regulates immune function, which may lead to the development of novel therapeutic and preventive strategies toward various diseases.

- Molecular and cellular basis of tissue fibrosis during chronic inflammation
- Pathophysiological regulation of the immune system by chemokines and the implication of this in GVHD, tumor development, infectious diseases, and autoimmunity
- Development of vaccines against cancers and infectious diseases

Public Health

Public health is the science and art of preventing disease, prolonging life, and promoting health and quality of life (QOL) through organized community effort. Through studies in various fields and laboratories, our department aims to advance research, support policy development, and promote education toward these ends.

- Efficiency and equity issues of health systems
- Health manpower policy
- Occupational and environmental health
- Health services research
Forensic Medicine

We conduct autopsies, and various examinations including histology, biochemistry, radiology, toxicology, and genetics as usual practices. We also perform the following research with Education and Research Center of Legal Medicine, Chiba University.

- Study on analysis and pathophysiology of illegal drugs including new psychoactive substances.
- Application of imaging modalities such as CT or MRI for death investigation.
- Study on age and stature estimation by using CT.
- Study on mechanical properties of human tissue.
- Study on diagnosis of drowning.

Medical Informatics and Economics

The role of research and education of this department is provided as the department of the graduate school, and the role of practical management is conducted as the Department of Planning, Information and Management in the University of Tokyo Hospital. All teaching staffs are in charge of both the two roles and the department of health informatics of school of public health. The research and postgraduate education programs cover basic medical informatics, advance applications of information technology for clinical practice, technology assessment and standardization of healthcare information.

- Development and application of clinical ontology
- Research for sharing healthcare data among medical institutions and hospitals, and the application for clinical epidemiology
- Extraction of medical knowledge from electronic medical record database using natural language processing
- Development of knowledge-driven real time alerting system in clinical practice
- Evaluation study of hospital management and analysis of medical resource placement
Respiratory Medicine

Based on the fact that a number of patients with respiratory diseases including lung cancer and COPD is tremendously increasing, fruitful results of respiratory research are more and more expected in the 21st century. In this era, we are conducting basic and clinical research for various respiratory disorders including lung cancer, asthma and COPD. Especially, we have been intensively studying the molecular mechanisms underlying the pathogenesis of lung disorders. Our research goal is to develop novel therapeutic tools to manage these pulmonary diseases.

- Clinical studies of lung cancer, COPD, bronchial asthma and pulmonary fibrosis
- Epidemiological studies of diffuse panbronchiolitis (DPB) and interstitial lung disease
- Molecular mechanisms underlying the pathogenesis of acute lung injury or ARDS
- Molecular mechanisms underlying the pathogenesis of pulmonary fibrosis (as shown in Figure)
- Analysis of disease models using genetically-engineered mice
- Effects of air pollutants such as diesel exhausts on airway hyperresponsiveness
- Roles of chemokines/cytokines and eicosanoids on airway epithelial cells, smooth muscle cells and eosinophils.
- Molecular mechanisms of epithelial-mesenchymal transition in lung cancer and inflammatory lung disease
- DNA methylation and lung cancer
- Establishment of conditional vectors for hairpin siRNA knockdowns
- Establishment of CpG island searcher
- Search of a biomarker of lung cancer and inflammatory lung disease

Cardiovascular Medicine

We are investigating the pathogenesis, pathophysiology, diagnostic tools and novel therapeutic approaches for various cardiovascular diseases, such as ischemic heart disease, heart failure, cardiomyopathy, arrhythmias, atherosclerosis and hypertension. To carry out the comprehensive study, we are adopting a wide variety of research modalities, such as molecular biology, iPS cells, genomic analysis, molecular imaging.

- Molecular mechanisms of human heart diseases using iPS cells
- Interplay between organs, cells and molecules in chronic inflammation
- Transcriptional regulation of various genes involved in cardiovascular development and pathogenesis
- Cardiac hypertrophy and heart failure: analyses of pathogenic mechanisms and development of novel therapies (gene therapy, etc.)
- Roles of hypoxia signaling in cardiovascular diseases
- Differentiation of smooth muscle cells (atherosclerosis and restenosis after vascular interventions)
- Endothelial dysfunction in various diseases
- Genetic polymorphisms and risk factors in cardiovascular disease
- Development of new integrated databases for clinical information and research
- Investigation of disease pathophysiology and development of novel therapies (severe heart failure, cardiac transplantation, Marfan’s syndrome, pulmonary hypertension, congenital heart disease, cardiac rehabilitation, etc.)
- Imaging techniques (echocardiography, MRI, CT, SPECT) in cardiovascular diseases
Gastroenterology

Our Department of Gastroenterology is one of the top institutions in the world in the treatment of hepatocellular carcinoma by unique ablation (RFA) and gastrointestinal/pancreatobiliary cancer/stone by endoscopic manipulation (ESD&ERCP). The goal of our department is to accurately diagnose and give the best available treatment to these patients, and to this end, we are performing a wide variety of basic as well as clinical research.

- Development of better therapeutic strategy for hepatitis B and C
- Elucidation of hepatocarcinogenesis mechanism in viral hepatitis
- Development of a better therapeutic modality for hepatocellular carcinoma & metastatic liver tumor
- Elucidation of gastric injury mechanisms by *Helicobacter pylori*
- Clarification of colon disease, especially right-sided colon carcinogenesis
- Development of therapeutic strategy for advanced pancreatobiliary cancer
- Development of a better endoscopic therapeutic modality for pancreatobiliary cancer/stone
- Development of better diagnostic & therapeutic strategy for chronic pancreatitis
- Development of an endoscopic en bloc resection method for early gastric, esophageal and colonic cancer
- Elucidation of the mechanisms of metabolism-associated liver diseases
- Development of better diagnostic & therapeutic strategy for small intestinal diseases

Nutrition and Metabolism

We are investigating to reveal the molecular mechanisms underlying the development of metabolic diseases (diabetes mellitus, lipid metabolic disorders, obesity disease, metabolic syndrome and atherosclerosis) using interdisciplinary approaches and state-of-the-art technology including genetically engineered model animals, iPSC cells, omics analyses (epigenome, metabolome etc), human genetics, clinical epidemiology and bioinformatics. Our major goal is to develop mechanism-based fundamental treatment and prevention strategies for the metabolic diseases.

- Elucidation of molecular mechanism of insulin resistance linked to obesity and development of novel treatment focusing on AdipoR
- Epigenetic analysis of the mechanisms of metabolic control and their disruption in type 2 diabetes and obesity
- Elucidation of the molecular mechanism of metabolic diseases and development of novel treatment using iPSC cells
- Molecular mechanism of insulin signal transduction
- Molecular mechanism of insulin secretory defect in type 2 diabetes
- Genetic susceptibility and risk factors of type 2 diabetes
- Development of accurate diagnostic algorithm for type 2 diabetes
- Molecular mechanism of adipogenesis and obesity
- Transcriptional regulation of lipid metabolism
- Molecular mechanism of atherosclerosis
- Mouse genetic models of diabetes, lipid metabolism disorder and atherosclerosis
Hematology and Oncology

We investigate the pathogenesis, diagnostic methods, and novel therapeutics of hematological diseases by the comprehensive use of research technologies in molecular biology, cellular biology, developmental engineering, and genomic science. Studies about transcriptional regulation and signal transduction in hematopoiesis and analyses of regulation of hematopoietic stem cells are promoted. We also implement basic and clinical studies based on genomics, regenerative medicine, and transplantation medicine, which aim at application to therapeutic strategies.

- Mechanisms in the regulation of self renewal and differentiation in hematopoietic stem cells
- Comprehensive genomic and epigenetic analysis of hematological malignancies
- Elucidation of the molecular mechanisms underlying the pathogenesis of leukemia
- Development and analysis of mouse models of leukemogenesis
- Regenerative medicine and pathogenesis study based on human iPS cell technology

Allergy and Rheumatology

Allergy and rheumatic diseases are immune mediated disorders. We are investigating the fine mechanisms of such disorders. One of our final purposes is to establish novel therapies which control pathological immune disorders but do not suppress other physiologically important immune functions. We are combining recent findings in basic immunology and our own viewpoints base on our clinical experience.

- Functional analysis of a novel regulatory T cell subset that suppresses autoantibody production
- Clonal analyses of T cell receptor (TCR), in vitro reconstitution of the TCR function using such information and antigen specific immunotherapy
- Genomic analyses of rheumatic diseases
- Development of molecular targeting immunosuppressive reagents
- Mechanism of immunological tolerance to autoantigens and immunoregulation
- Intracellular signaling in immune disorders
- Airway hypersensitivity and remodeling of bronchial asthma
- Involvement of chemokines in allergic diseases and applications to therapeutic strategies

Infectious Diseases

We are investigating both clinical and basic aspects in infectious diseases, in particular, on HIV infection and hepatitis viral infections, the latter of which is the major cause of liver disease worldwide. Our research topics cover the wide areas in microbiology, immunology and pathobiology of infectious diseases, including HIV and HCV infections.

- Clinical studies of HIV infection
- Treatment and prevention of viral hepatitis
- Molecular pathogenesis of hepatocellular carcinoma in HCV infection
- Pathogenesis of extrahepatic manifestations and its control in HCV infection
- Pathogenesis of progression of HIV infection
- Molecular pathogenesis of hepatocellular carcinoma in HBV infection
- Molecular pathogenesis of hepatitis B viral infection
- Host defenses to microorganisms
- Molecular analysis of innate immunity in microorganism infection
- Pathogenesis of influenza viral infection
- Mechanism of multi-drug resistant microorganisms
Stress Sciences and Psychosomatic Medicine

The targets of our laboratory include stress-related diseases such as primary headaches and lifestyle-related diseases, eating disorders and malignancies. The goals of our work are to determine the mechanisms of these conditions, to develop objective markers for diagnosis and severity, and to discover new treatment approaches using ecological momentary assessment (EMA), biochemical assessment of eating-related molecules, and physiological assessment of autonomic nervous function.

- We are using ecological momentary assessment (EMA) techniques to collect and evaluate subjective and objective data including physical activity and autonomic nervous function in natural settings in stress-related diseases. We are also developing new treatments using these methods.
- Investigation into the pathophysiology, psychopathology and neurobehavioral basis of stress-related diseases by use of ecological momentary assessment methods
- Using heart rate and blood pressure variability, we are investigating autonomic nervous function in eating disorders. This work uses non-linear analyses such as fractal analysis, as well as linear analysis.
- We have developed an egogram questionnaire, which we refer to as the TEG.

Clinical Laboratory Medicine

The main goal of our research projects, described below, is the development of new and useful laboratory tests, and elucidation of pathophysiology of diseases through laboratory tests.

- (Pathophysiologial roles of lysophospholipid mediators, and its application to laboratory medicine
- Platelet biology
- Hepatology
- Genetic testing
- Bioactive peptides, especially adrenomedullin
- Oxidative stress and organ damage
- Cell surface analysis and quantification of cell surface antigens using flow cytometry
- Analysis of ventricular functions using echocardiography
- Relationship between the respiratory function and various pathophysiological conditions
- Magnetoencephalographic (MEG) study on neural mechanisms for audiovisual integration

Transfusion Medicine

The Department of Transfusion Medicine aims the achievement of safe and appropriate transfusion practice in the hospital, and for this purpose, controls, tests and supplies all blood products for transfusion. The research fields include:

- Detection of red cells/leukocytes/platelets antigens/antibodies
- Development of novel methods for the evaluation of platelet function
- Development of new anti-angiogenic strategies for the treatment of solid tumors
- Use of hematopoietic stem cells in regenerative medicine
- Investigation on the pathophysiology of the immunological adverse effects of transfusion
- Development of new anti-thrombotic materials for clinical use
Reproductive, Developmental and Aging Sciences

Reproductive Endocrinology

We manage women’s reproductive health comprehensively throughout their respective life stages (adolescence, reproductive ages, menopause, and post-menopause). We also aim to develop advanced reproductive techniques, which could be practiced with higher success rates and improved safety, based on experimental and clinical research.

- Establishment of effective and low-risk treatment for infertility
- Development of assisted reproductive technology
- Understanding of interaction between the endometrium and embryo during the implantation period
- Study of pathophysiology of endometriosis
- Understanding of local regulation of folliculogenesis
- Technical development of advanced endoscopic / minimally invasive surgery
- Development of hormone replacement therapy for perimenopausal / postmenopausal women
- Health care for women in perimenopausal / postmenopausal status
- Development of oncofertility

Gynecologic Oncology

Our basic research in cervical cancer focuses on carcinogenesis and roles of HPV (Human Papilloma Virus) infection, as well as development of therapeutic vaccines. In endometrial and ovarian cancers, we have identified novel cancer-related genes and their functions, and are exploring novel molecular-targeted therapies using oncofgenomic analyses. Clinically, we are investigating intensive surgical management, as well as less invasive (fertility-sparing) surgery in gynecologic malignancies.

- Intensive surgery for advanced or recurrent tumors and less invasive (laparoscopic) surgery for selected patients
- Trachelectomy for early staged cervical cancer patients
- HPV genotyping and clinical trials of therapeutic vaccines for cervical intraepithelial neoplasias
- Identification of molecular-targeted therapies on basis of genomewide analyses
- Development of novel therapeutics using drug delivery system
Perinatal Medicine

The researches are on going for development of precise prenatal diagnosis on the fetal status using ultrasonography. We are also focusing on the immunological aspects and inflammation in pathophysiology of pregnancy. Our goal is to develop the therapy and prevention methods for habitual abortion, pregnancy induced hypertension, preterm labor, and cerebral palsy.

- Early diagnosis of abnormal fetuses using three dimensional ultrasonography
- Management of habitual abortion
- Management of complicated pregnancy
- Management of preterm labor
- Prevention of cerebral palsy of the newborn

Molecular and Cellular Reproductive Medicine

We investigate the molecular mechanisms of reproductive functions using the knowledge and techniques of molecular and cellular biology and genetics. Our studies are focusing on the pathophysiological mechanism of sex steroid hormones to elucidate how these hormones effect on reproductive phenomena including embryogenesis, spermatogenesis and fetal development, and on the prenatal genetic diagnosis.

- Effect of sex steroid hormones on reproductive medicine
- Molecular mechanisms of embryogenesis
- Analysis of implantation mechanism
- Analysis of intrauterine fetal development
- Prenatal diagnosis using molecular genetics

Pediatrics / Developmental Pediatrics

We are studying all aspects concerning the health of infants, children and adolescents. We have achieved very important contributions to clarify the molecular pathogenesis of pediatric disorders.

- Molecular diagnosis, analysis and collaborative treatment of pediatric renal diseases
- Molecular diagnosis and analyses of hematological malignancies and solid tumors
- Multi-institutional comparative clinical studies on leukemia and solid tumors
- Molecular analysis and diagnosis and collaborative treatment of endocrine/metabolic diseases and diabetes
- Diagnosis, molecular analysis and collaborative treatment of congenital heart diseases
- Investigation of biotin and gut hormones in neonates
- Comprehensive analysis of biomarkers in neonatal diseases
- Near-infrared spectroscopy analysis of neurological development in early infancy
- Genome-wide epigenetic modification in very low birth weight infants
- Neurocognitive effects of intrauterine infection and environmental toxins
- Diagnosis and comprehensive treatment of neuromuscular disorders
- Molecular diagnosis and treatment of mitochondrial disorders
- Early intervention of developmental disorders
- Molecular analysis and collaborative treatment of congenital immunodeficiency and allergic diseases
Pediatric Surgery

Pediatric surgical diseases have great variety. In our department all kinds of pediatric surgical conditions are treated, and in these fetal and neonatal surgical care is our main interest. We also treat many pediatric patients using minimally invasive surgeries such as laparoscopy and thoracoscopy.

- The development and differentiation of the fetal lung
- Fetal diagnosis of congenital malformations
- Fetal surgery and treatment
- Pediatric minimally invasive surgery
- Pediatric robotic surgery
- Probiotics and prebiotics applied to pediatric surgical patients
- Biliary atresia and biliary dilatation; their treatment and long-term prognosis
- The treatment by regenerative medicine of air way malacia and stenosis
- Development of pediatric surgical models

Pediatric Oncology

Multidisciplinary treatments and basic research for patients with hematological malignancies and solid tumors are carry out in our department. Advanced medicine including stem cell transplantation is given to patients with leukemia. In addition, appropriate care strategies combining surgical treatment and chemotherapy are decided and carried out on various solid tumors after extremely close discussion with pediatric surgeons. We also implement basic research regarding pathogenesis of pediatric malignancies.

- Genetic analysis and investigations for prognostic factors in neuroblastoma
- Tumorigenesis of Wilms tumors
- Genetic and epigenetic analyses of rhabdomyosarcoma
- Comprehensive genetic analysis of hepatoblastoma
- Studies on pathogenesis and diagnosis of acute lymphoblastic leukemia
- Multi-institutional joint studies on leukemia and solid tumors

Geriatric Medicine

http://www.h.u-tokyo.ac.jp/patient/depts/rounenbyou/index.html

The department of Geriatric Medicine, established in 1962, is the first department of Geriatric Medicine in Japan. The staff physicians are highly trained and experienced in managing complex cares. Comprehensive cares including assessment and treatment of chronic diseases and geriatric conditions are provided to ensure quality of life and health in elderly patients. Our research interests are as follows:

- Molecular mechanisms of vascular calcification
- Molecular mechanisms of Sarcopenia
- Inhibition of cognitive decline using antihypertensive drugs
- Cares and burden of family caregivers of patients with dementia
- Risk factors for adverse drug events
- Association between sex hormone and geriatric disease
- Novel gene responsible for locomotive syndrome, including osteoporosis
- Pathophysiological assessment on bronchial asthma using gene-targeted mice
- Defensin, the antimicrobial peptide
- Molecular mechanisms of vascular injury in sleep apnea syndrome
Surgical Sciences

Thoracic Surgery

We specialize in surgical therapeutics, clinical and basic oncology for malignant neoplasms of the chest, such as primary lung cancer, pulmonary metastases, and mediastinal tumors. We also study immunotherapies for patients with postoperative recurrence of lung cancer or those with refractory malignant neoplasms. We started clinical lung transplantation program along with basic research since the University of Tokyo Hospital has become a certified hospital for lung transplantation in March 2014.

- Surgical therapeutics for malignant neoplasms of the chest
- Clinical and basic oncology of lung cancer
- Clinical and biological studies on thymic neoplasms
- Immunotherapy for lung neoplasms
- Clinical and basic studies on lung transplantation

Cardiovascular Surgery

We are leading in Japan by annual surgery case volume of 400. New knowledge and techniques are actively applied clinically. Many clinical research projects are going on along with routine clinical activities. Our laboratories have been also carrying out a large variety of basic research.

- Clinical research
 - Improvement of long-term results of heart transplantation
 - Ventricular assist device for end-stage heart failure
 - Valve plasty and valve-sparing operation
 - Treatment of complex congenital heart disease
- Basic and experimental research
 - Development of new control system for ventricular assist device
 - Development of myocardial regenerative therapy
 - Development of emerging technology for spinal cord protection

Ventricular assist devices clinically available in Japan
Gastrointestinal Surgery

Our goal is to cure the cancer patients by much better surgery. The development of better surgical methods has the highest priority. Better surgery means radicality of the cancer, minimal invasiveness, and good QOL after surgery. Recently, non-transsthoracic radical esophagectomy with extended lymphadenectomy (NOVEL) has been applied, which shows less pulmonary complications and good respiratory functions after surgery (Figure).

- For much better surgery
 - NOVEL (non-transsthoracic esophageal cancer surgery)
 - NEWS (Non-exposed Endoscopic Well-inversion Surgery for gastric tumor)
- For radicality of advanced cancer treatment
 - Phase II: S-1, CDDP Herceptin combined chemotherapy for HER2-positive advanced gastric cancer
 - Chemo-Immunotherapy (DCF+αXT) for advanced esophageal cancer
 - Adjuvant vaccination for Stage IIA esophageal cancer patients after surgery
- Carcinogenesis, progression, metastasis, and prevention
 - Inflammation and gastrointestinal carcinogenesis
 - Are cancer cells derived from bone marrow?
 - Early detection of cancer by new biomarkers
 - Carcinogenic analysis with reflux esophagitis model

Hepatobiliary Pancreatic Surgery

We constantly perform nearly 200 hepatectomies every year on patients with hepatobiliary malignancies including hepatocellular carcinoma and metastatic liver tumors. The surgical results can be classified as amongst the highest ranking in the world. In order to improve the surgical outcome for hepatobiliary-pancreatic malignancies, we conduct wide areas of research such as analysis of prognostic factors for liver malignancies, evaluation of liver hemodynamics using ultrasonography, liver ischemia/reperfusion injury, and liver regeneration.

- The analysis of genetic abnormalities in hepatocellular carcinoma
- Development of new methods for the evaluation of liver functional reserve
- The evaluation of hemodynamics in the congested liver using ultrasonography
- Navigation system during liver surgery
- Study of intraoperative diagnosis (contrast-enhanced ultrasound, ICG fluorescent imaging, and elastography)
- Study of intraoperative diagnosis (enhanced ultrasound and ICG fluorescent imaging)
- Clinical trials concerning perioperative chemotherapy in hepatic resection for colorectal liver metastasis
- RCT to evaluate the effects of surgical resection and RFA for HCC (SURF trial) Investigation of adjuvant immunotherapies after surgery for pancreato-biliary malignant tumors
- Vascular reconstruction using cryopreserved vein grafts Evaluation of the anti-adhesion materials

Urology

We constantly perform more than 1,200 urological surgeries every year, including nephrectomy, cystectomy and prostatectomy, with increasing trend of laparoscopic maneuvers. Robotic surgery was introduced in 2011. Surgical or non-surgical means are employed for non-cancer disease including chronic renal failure, urinary dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incontinence and interstitial cystitis. With regard to basic research and treatment, genome analysis, dendritic cell dysfunction, urinary incont
Artificial Organ and Transplantation Division

535 living donor liver transplantation and 22 deceased donor liver transplantation until June, 2013. The 5-year survival rate for adult case was 85%, which is significantly superior to that of the national data (70%).

- Surgical technique of liver transplantation: including right lateral sector graft, APOLT(Auxillary partial orthotopic liver transplantation)
- Hepatic vein reconstruction using cryopreserved vein grafts
- Identification of veno-occlusive resions using ICG fluorescence imaging
- Antiviral treatment for hepatitic C virus infection after liver transplantation
- Validity and feasibility of transient elastography for the transplanted liver
- New-onset diabetes mellitus developing in adult living donor liver transplant recipient
- Diagnosis and treatment for acute rejection
- Diagnosis and treatment for postoperative infection

Surgical Oncology

We have performed basic and clinical research mainly on colorectal cancer. In basic research, we are studying biological phenomenon from various point of view such as carcinogenesis, cancer metastasis, and immunology. In clinical study, we are trying to identify the best way to treat each patient with the least surgical stress by minimally invasive surgery such as laparoscopic surgery and robotic surgery (da Vinci), and preoperative chemoradiotherapy for rectal cancer.

- Robot assisted surgery (da Vinci robotic surgery)
- Radiosensitivity and chemosensitivity of cancer
- Characterization of tumor vasculature and its therapeutic application
- Surveillance of ulcerative colitis
- Carcinogenesis in ulcerative colitis
- Cancer and autophagy
- Genetic analyze of poorly differentiated colorectal cancer
- Development of chemoradioimmunotherapy
- Intraperitoneal chemotherapy for peritoneal carcinomatosis

Vascular Surgery

We had a great deal of experience in treating patients with various vascular diseases, and we have performed much research on atherosclerosis, angiogenesis and vascular regeneration. Based on the research results, we are trying to identify the best way to treat each patient with the least surgical stress.

- Development of a novel method to diagnose and treat the vascular diseases.
 - Vascular regeneration therapy for atherosclerotic obliterans
 - Development of aortic aneurysm model and simulation
 - Gene analysis of peripheral arterial disease
 - Visualization of the atherosclerotic lesions with fluorescent probe
 - Navigation system for less invasive vascular surgery
 - Analysis of intermittent claudication with dynamic and mechanical model
 - Dynamic and genetic mechanism of aortic aneurysm expansion
 - Development of the new prosthesis with small diameter
 - Hemodynamic analysis of aortic wall after endovascular aneurysm repair
 - Drug delivery system for aortic aneurysm and peripheral arterial disease
Metabolic Care and Endocrine Surgery

The department of breast and endocrine surgery in Tokyo University Hospital provides surgical treatment for approximately 250 patients with breast cancer, thyroid cancer, benign thyroid tumor or parathyroid adenoma every year. Our research activities focus mainly on breast cancer and thyroid cancer.

- Genetic analysis of breast cancer stem cells
- Improvement of QOL in cancer patients with cosmetic camouflage
- Introduction of High Intensity Focused Ultrasound into clinical use
- Clinical impact of Eribulin on metastatic breast cancer

Dermatology

Our department actively performs the following cutting-edge, multifaceted research projects that will be put into clinical practice in the future.

- Molecular mechanisms of immunological abnormalities and skin and lung fibrosis in scleroderma
- Development of novel therapies to scleroderma, including B cell depletion therapy
- Relative contribution of various cell adhesion molecules and chemokines to inflammatory conditions
- Identification of novel autoantibodies and their clinical significance in connective tissue diseases
- New roles of B lymphocytes, especially regulatory roles, in inflammatory disorders
- Immunological abnormalities of atopic dermatitis
- Pivotal roles of Fli1 in systemic sclerosis
- Roles of chemokines in cutaneous lymphoma

Plastic and Reconstructive Surgery

In our lab, we are investigating the mechanisms of morphogenesis of congenital anomalies using a developmental biological approach. In addition, we are performing extensive research into the clinical application of engineered tissues such as skin, soft tissue, and cartilage. We also have several cosmesis-related projects such as clinical hair regrowth with cultured cells and analysis of skin aging mechanisms.

- Basic Research
 - Mesenchymal stem cells derived from lipoaspirates
 - Organ engineering with human adult stem cells
 - Hair regrowth with cultured dermal papilla cells
 - Research on aging skin-related factors
 - Regulation of skin aging using hormones and retinoids
 - Regulation of epidermis by factors derived from dermal fibroblasts
- Clinical Research
 - Ultramicrosurgical reconstruction using vascularized tissue transfers
 - Reconstructions for established nerve palsy
 - Mechanism and surgical treatments of lymphedema
 - Vascularized ovarian preservation and transplantation
 - Free vascularized transfers of nerve cells, muscle cells, adiposal cells, and lymphnodes
 - Allogenic tissue transfer (uterus, ovarium, anus etc.)
 - Training method for supermicrosurgical anastomosis
Oral and Maxillofacial Surgery

Our laboratory has been performing a wide range of clinically oriented research in oral-maxillofacial disorders such as congenital diseases, jaw deformities and tumors in the oral region. Cartilage and bone regeneration using tissue engineering techniques is our main field of research.

- Clinical research:
 - Treatment of facial deformities and malocclusion in patients with cleft lip/palate
 - Research on facial growth in patients with craniofacial anomalies
 - Reconstruction of oral and maxillofacial area by custom-made artificial bone (CT bone) (clinical trial)
 - Transplantation of implant-type tissue-engineered cartilage for cleft lip-nose patients (clinical study)
 - Management of occlusion in patients with fibrodyplasia ossificans progressiva (FOP)
 - QOL study of oral health care system in preoperative cancer patients
 - Clinical study of antifungal susceptibility in patients with oral candidiasis

- Basic and experimental research:
 - Regeneration of bone and cartilage with tissue-engineering approach
 - Development of intelligent artificial bone with the ability of bone induction
 - Development of micro-tetrapod bone implant
 - Molecular biology of cartilage repair and its application to cartilage regenerative medicine
 - Cartilage regenerative medicine using iPS cells
 - Development of novel scaffolds for cartilage and bone regeneration
 - In vivo evaluation of tissue-engineered cartilage and bone
 - Study on the control of mesenchymal cell differentiation
 - Elucidation of epigenetic abnormalities in oral cancers and oral premalignant lesions
 - Elucidation of sphingosine-1-phosphate signaling and its role in multistage oral cancer
 - Functional analysis of microRNAs in human dental pulp stem cells

http://plaza.umin.ac.jp/~oralsurg/

Orthopaedic Surgery

Our department was established in 1906 as the first department of orthopaedic surgery in Japan. Since then our efforts have been dedicated to responding to the needs of patients for orthopaedic care and to related research. Our department seeks to elucidate the molecular and genetic backgrounds of bone and cartilage disorders in order to develop groundbreaking treatments for these conditions. At the same time, we are attempting to establish various clinical devices.

- Systemic and comprehensive study for osteoarthritis
- Bone, cartilage and nerve regeneration
- Regulation of anabolic and catabolic bone metabolism by cytokines
- Molecular mechanism of age-related bone loss
- Molecular mechanism of osteoclast differentiation and apoptosis (RANKL-RANK, INF, Src)
- Gene therapy to control pathological bone destruction (arthritic bone resorption and arthritic joint destruction) using adenovirus vectors
- Surgical navigation system with a three-dimensional display and navigation robot
- Long-life artificial joint by construction of a super-durable lubricious interface of MPC

http://www.u-tokyo-ortho.jp/

Ophthalmology

Our department applies cutting-edge technologies and knowledge to diagnosis and treatment of eye diseases. To elucidate pathogenesis and establish more efficient ways of diagnosis and treatment of various refractory eye diseases, basic researches utilizing molecular biological, immunological and/or pharmacological techniques and clinical studies utilizing epidemiological, biostatistical and/or optical methods are conducted. Our efforts are also dedicated to regenerative medicine of the cornea and retina.

- Investigation of primary glaucomas and relating factors
- Development of new methods of glaucoma treatment and validation by RCT
- Investigation of new ocular hypotensive drugs and their mechanism of action by using transgenic or KO mice or experimental glaucoma monkeys
- Investigation of mechanism of neural cell death by using cultured RGCs or retinal glial cells and exploratory search for new neuroprotective agents
- Analysis of ocular circulation in glaucoma and retinal diseases
- Analysis of corneal topography and wave-front analysis of optical aberrations
- Development of tissue-engineered cornea by using cultured stem cells of corneal endothelium and epithelium
- Investigation of molecular mechanism of choroid-retinal neovascularization and new drug delivery system for it utilizing nanotechnology
- Regenerative medicine of the retina using retinal stem cells
- Investigation of immune responses in rejection of transplanted cornea and role of chemokines and receptors in uveitis

http://plaza.umin.ac.jp/oph/
Otorhinolaryngology and Head & Neck Surgery

Our research is composed of both clinical and basic research. Clinical research is conducted by specialized clinics in the hospital, which experience ear diseases and hearing disorders from neonates to adulthood, head and neck cancer, paranasal diseases, olfactory and disorders, vertigo and balance disorders and voice and swallowing disorders. Basic and experimental research into molecular biology, electrophysiology and morphology is conducted in our department’s laboratories.

- Clinical research
 - Cochlear implantation in deaf children and their development of hearing, speech and language
 - Surgical correction of congenital microtia and atresia and postoperative radical ears to improve hearing
 - Quality of life in patients with head and neck cancer to restore speech and swallowing function
 - Vestibular research on the oculomotor and balance system and myogenic potential
 - Navigation of the paranasal sinuses and skull base surgery
 - Surgical treatment of voice and swallowing disorders
 - Basic and experimental research
 - Molecular biology of the inner ear
 - Molecular biology of pharyngeal cancer
 - Molecular biology of differentiation and development of inner ear and olfactory epithelium
 - Origins of vestibular myogenic potential
 - Aging and regeneration of olfactory epithelium
 - Physiology of vocal cord vibration

Rehabilitation Medicine

Our research purpose is to improve the provision of a unique and comprehensive rehabilitation service enabling people to develop their full potential and often returning from being a “patient” to being a “person”. Clinically oriented studies concentrate on elucidation of the origin of disabilities to cause activity limitation and restriction of participation.

- Gait analysis
 - 3-dimensional image analysis with a infrared camera system
 - Measurements of 3 dimensional ground reaction forces with a force platform
 - Measurements of foot pressures with a computerised pressure sensor
- Clinical research on intractable rare diseases
 - Fibrodysplasia Ossificans Progressiva
 - Congenital Insensitivity to Pain
- Clinical research on congenital limb malformations
- Research on the effect of robotic rehabilitation

Anesthesiology

We have seven research groups and their fields include respiration, circulation, pain, immune system and shock. These are recent major subjects of our research.

- Respiratory system: A role of cytokine signaling in acute lung injury; Exploring optimal ventilatory strategy for respiratory failure
- Immune systems: Modification of immune system by anesthesia; Signal transduction pathway related to apoptosis induced by sepsis or ischemia-reperfusion injury
- Shock: Investigation of pathophysiology of shock; Effect of new plasma substitutes on hemorrhagic shock.
- Inflammation: A role of lipid mediators in organ damage mediated by ischemia-reperfusion injury of a mouse lower limb.
- Pain: A role of lipid mediators in the formation of hyperalgesia; A role of spinal microglial cells in the development of inflammation-mediated neuropathic pain; Mechanism of pruritoceptive and neurogenic Itch; Cognitive-behavioral therapy on chronic pain.
- Nervous system: Analysis of electroencephalography during general anesthetic; Clinical evaluation of neurological sequelae after cardiac surgery; Evaluation of neuroprotective properties of anesthetics.
- Anesthesia apparatus and other medical equipment: Invention and validation of a new airway device.
- Glucose metabolism: Effect of anesthetics on glucose metabolism in vivo
- Epidemiological survey and outcome study with large administrative database.
Emergency and Critical Care Medicine

We are developing emergency department information systems designed specifically for use in emergency departments. This system will increase the efficiency of emergency medical care, leading to an accumulation of knowledge and an advancement of epidemiological research in Japan. Furthermore, we are collaborating with the School of Engineering, and now developing new medical device and monitoring system.

- Emergency Department Information Systems
- Vital Care Network System
- Telemonitoring system for prehospital medicine
- High-performance transfer system for the ambulances
Health Sciences and Nursing

Mental Health / Psychiatric Nursing

Our departments conduct research on mental health and psycho-social stress and provide education/training of professionals in related fields from global perspectives.

- Mental Health
 - Mental health epidemiology
 - Occupational mental health/Occupational health psychology
 - Psychoeducation/Stress management
 - Disaster and mental health
 - Global mental health
 - Practice and Evaluation of Psychotherapy
 - Early detection and therapeutic education of Pervasive Developmental Disorders

- Psychiatric Nursing
 - Supporting people living with mental health problems
 - Wellness self-management in mental health
 - Recovery for people with mental illness
 - Patients’ satisfaction with psychiatric services

Biostatistics / Epidemiology and Preventive Health Sciences

http://www.epistat.m.u-tokyo.ac.jp/

We are working on methodological researches of biostatistics and theoretical epidemiology, as well as consulting and supporting the conduct of epidemiologic/clinical studies. The followings are our important missions: biostatistical education for undergraduate and graduate students; data management, quality assurance and statistical analysis in Japan Clinical Research Support Unit; and the support of planning and analysis for clinical trials conducted in the University of Tokyo Hospital Clinical Research Support Center.

- Methodology
 - Design and analysis of clinical trials/epidemiologic studies
 - Causal inference, missing data analysis and measurement error models
 - Meta-analysis (eg. evaluation of surrogate endpoints)

- Collaborative projects
 - Japan Arteriosclerosis Longitudinal Study (JALS)
 - Chronic Kidney Disease Japan Cohort (CKD-JAC) Study
 - National Surgical Adjuvant Study of Breast Cancer (N-SAS-BC)
Nursing Administration / Advanced Clinical Nursing

http://nurs-adm.umin.jp/

Our research programs aim to support clinical nurses in providing high quality care for their patients in efficient way. Under a nation-wide healthcare reform, improving the efficiency of healthcare delivery systems becomes essential. For nursing care, assessing the efficacy and the putting in place of quality assurance systems are required. Applying management theories to nursing administration, we focus on nursing quality improvement, nurse staffing, patient classification systems, budgetary management, staff development and continuing education.

- Evaluation and improvement of quality of nursing care
- Benchmarking of nursing quality indicators
- Outcome management for nursing practice
- Risk management
- Human resources management
- Nursing case management and critical pathways
- Effect of care environment on patients
- International comparison of nursing quality indicators
- Nursing policy and economics

Family Nursing

Hand-in-hand with the seismic social changes occurring nationally and worldwide -- including declining birthrates and a growing proportion of elderly people, vulnerability of regional networks, and movement toward a gender-equal society -- the form and function of the family unit are also changing. Current Japanese society expects not only a client-centered perspective, but also a perspective of the family as ‘client’ in nursing research. Within this context, our research focuses especially on child-rearing issues and on caring for children with illness.

- Postnatal depression and difficulties in child rearing
- Prevention of child abuse and neglect
- Development of Pediatric QOL Inventory for children with chronic illness and their parents
- Late effects of treatment and posttraumatic stress symptoms in children with cancer
- Role and expertise of nursing staff in daycare centers
- Burden borne by caregivers of severely disabled children, and their utilization of respite care services
- Care for dying patients and their families (QOL, family function)

Community Health Nursing

The goal of our department is to continuously maintain and improve the health and quality of life of people regardless of their life stages and health statuses, by taking advantage of the characteristics of a target community or population and constructing the system. Also, we cover the research on skills of public health nurses who are the provider of community health care.

- Construction of community health care system
- Community health care for maternal and child health/ mental health/ elderly’s health
- Community health nursing for disaster prevention and recovery
- Skills of public health nurses

http://park.itc.u-tokyo.ac.jp/chn/english/index.html

Research of community health nursing
Adult Health Nursing/ Palliative Care Nursing

Our research activities are targeted at quality assurance/improvement of long-term nursing care for clients and their family members. We also aim at advancing knowledge grounded at nursing activities in Japan. 1) Developing theoretical frameworks that guide nursing care by explaining the nature of illness/aging experience and experience of taking care of others. 2) Developing quality improvement systems for nursing/healthcare in hospitals, long-term care facilities, outpatients, and home care.

- Quality assurance/improvement of care in the long-term care system
- Development of clinically derived theories through case studies and phenomenological approach
- Interprofessional collaboration, patient education, and cognitive behavioral therapy for chronic pain
- Development of a community care system and nursing role
- Evaluation of outpatient nursing care for clients undergoing hematopoietic stem cell transplantation
- Development of quality indicators for gerontological homecare nursing
- Development of IT-based nursing care/educational programs

Midwifery and Women's Health

The physical and mental changes that occur during the perinatal period have a critical influence on women's health for their entire lives, including the child-rearing years, menopause, and old age. In addition, the influence extends to their children, family, and community. Specifically, our department focuses on the health of mothers and babies in the perinatal period, and mainly performs research in the following areas.

- Lifestyle in the perinatal period
 - Effects of exercise (yoga) during pregnancy on physical and mental well-being
 - Development of intervention methodology for improving dietary and weight management during pregnancy and postpartum
 - Health support for working women in the prenatal period and the child-rearing period
- Mental health in the perinatal period
 - Effects of fear of childbirth on physical and mental well-being among prenatal and postnatal women
- Identification of health problems in the perinatal period
 - Physical and mental conditions of pregnant women suffering from intimate partner violence
 - Prevalence of dysfunction of the pelvic floor muscles in the postpartum period and the identification of risk factors
 - Usage of maternal and child health handbooks in Mongolia
 - Relationship between the skin barrier function of infants and skin lesions
 - Disaster preparedness among pregnant and postpartum women

Gerontological Nursing / Wound Care Management

Pressure ulcers and diabetic foot ulcers usually occur in elderly people due to basic activities of daily living such as walking, sleeping, diet and excretion. Thus their supports are inevitable for comprehensive wound care management. Especially, diabetes mellitus, nutrition, and skin care are of importance for wound healing, hence we account for these keys to develop wound care technologies and devices. Our department address the new concept of nursing science, "Bioengineering Nursing," in which the basic science will be translated into clinical science through co-development of new technologies and devices with specialized engineers.

- Development and evaluation of wound management technology and devices
 - Elucidation of pathophysiology and its diagnosis technology of wound
 - Development of technology and devices for wound management and prevention
 - Evaluation of new technology and devices
 - Investigation of bioengineering aspect of elderly skin
 - Exploring of objective parameter of skin status
 - Development of intervention methodology for improving skin function

Products developed through bioengineering nursing research model
Health Sciences and Nursing

Health Sociology See Health and Social Behavior(p50)
Health Education See Health and Social Behavior(p50)
Health Promotion Science See Health Promotion Sciences(p51)
Biomedical Ethics See Biomedical Ethics(p51)
International Health

Global Health Policy

Our mission is to improve population health by enhancing accountability and improving the evidence base of global (both domestic and international) health programs through the provision of the best possible information and rigorous monitoring and evaluation. The department’s members generate knowledge and ideas through their research with high social and academic impacts, strengthen technical and leadership skills through educational programs, and enhance national capacities through collaborative projects, especially in the developing world.

The priority areas of research are:
- Global Burden of Disease (GBD)
- Health System Performance Assessment
- Domestic Health Policy Reform
- Inequality and Inequity in Health
- Infectious Disease Modeling
- Non-Communicable Diseases
- Health Technology Assessment and Health Innovations
- Radiation Exposure and Health in Fukushima

Community and Global Health

Our department acts for health and wellbeing of socially vulnerable people. Health itself is not necessarily our ultimate goal. How can an individual dream and reach her/his ultimate goal in life by making the best use of his/her health? This is more critical. We study and teach how it can be done in global settings. When any interventions are implemented, we continue to ask who receive real benefits from them.

- Health, nutrition, and development
- Health, human rights, and human security
- Ecological approach to infectious disease control
- Health promotion
- Disaster and health
- Human resources for health worldwide
- Maternal, newborn, and child health
Human Genetics

Department of Human Genetics is broadly interested in the human genome diversity, especially in the Asian populations. Specifically, we are using genomic research tools including SNP and HLA analyses, as well as gene expression profiling, to better understand the genetic background of a variety of complex diseases, especially bone and joint diseases, infectious diseases, immune related diseases and sleep disorders.

- Theoretical and experimental analyses on the genetics of complex diseases
 - Development of statistical approaches for susceptibility gene mapping in complex diseases
 - Comprehensive genetics of bone and joint diseases
 - Host susceptibility factors to infectious diseases
 - Genetic factors for immune related diseases
 - Molecular mechanisms of sleep disorders
- Analysis on the genome diversity of Asia-Pacific populations
- Development of methodologies for the analysis of protein interactions

Developmental Medical Sciences

Founded in 1966 as the Department of Maternal and Child Health, this department has devoted itself to the research and education on the maintenance and promotion of mothers’ and children’s health, including studies of infectious diseases, nutritional disorders and congenital anomalies. At present, the main research activities are experimental and epidemiological studies on the etiology (genetic and environmental factors), pathogenesis, prevention and treatment of various childhood brain disorders (congenital and acquired) that cause mental and motor disabilities and epilepsy, from the viewpoint of international health science and developmental neuroscience.

- Studies on developmental brain disorders
 - Abnormal neuronal differentiation and size control (tuberous sclerosis)
 - Neuronal migration disorders (lissencephaly, polymicrogyria)
 - Perinatal brain injury (periventricular leukomalacia)
 - Postnatal brain injury (acute encephalopathy)
 - Inherited metabolic disorders (peroxisomal and mitochondrial disorders)
- Molecular epidemiology of infectious diseases (diarrheal viruses)
- Field studies of maternal and child health (malnutrition, obesity)

Human Ecology

Ecological understanding of health and survival of contemporary human populations through the analyses of nutritional, demographic, and environmental aspects of each population is our primary goal. Both fieldworks on various Asia-Oceania populations as well as experimental studies dealing with nutrition and environmental chemicals are conducted, which would serves as the basis in challenging the International Health issues.

- Mechanistic analyses of the effect of subsistence transitions on the health and environment in rural and urban communities in developing countries
- Application of GPS, GIS, and remote sensing to health ecology and international health
- Exposure-effects evaluation of chemical pollution of watershed in rural Indonesian children
- Nutritional ecology, subsistence ecology, medical anthropology and biological demography in Asia-Oceania populations
- Development effects of perinatal exposures to heavy metals, pesticides, or endocrine disrupting chemicals
- Modulating effects of nutrients and nutritional status on environmental hazardous chemicals
- Sustainable society and health
Biomedical Chemistry

The aim of our department is to contribute to the overall global health and welfare through basic research. Our current interests are: the energy metabolism of humans, parasites, and bacteria; and RNA and RNA-binding proteins.

- Human succinate dehydrogenase complex and mitochondrial myopathy
- *Ascaris suum* and *Caenorhabditis elegans*
- Molecular mechanism of adaptation to low oxygen tension
- Mitochondrial quinol-fumarate reductase
- C. elegans as a model system of parasitic nematodes and ageing
- Malaria and Trypanosome: characterization of mitochondria as a target for chemotherapy
- *Escherichia coli* and *Mycobacterium*: respiratory enzymes and regulation of energy supply
- RNA and RNA-binding proteins
- Mitochondrial translation system
- RNA biogenesis of Eukarya and Archaea

School of Public Health

Biostatistics See Biostatistics / Epidemiology and Preventive Health Sciences(p42)

Health Sociology and Health Education See Health and Social Behavior(p50)
Social and Preventive Epidemiology

Our main research field is preventive epidemiology on lifestyle-related diseases. This department is unique in Japan since our core research field is "nutritional epidemiology", which epidemiologically examines the roles of diets for disease prevention and control.

- Methodological studies on dietary assessments
- Nutritional epidemiologic studies on nutrient intakes/dietary behaviors and health status
- Studies on development of dietary promotion methods and evaluation of their effectiveness
- Establishment of literature database for "epidemiologic studies on diets and health"
- Collaborative studies with clinical trial groups on nutrition-related diseases

Clinical Epidemiology and Health Economics

Through the cooperation with the specialists of epidemiology, statistics, clinical medicine, and economics, we implement multidisciplinary studies on clinical epidemiology, health economics, health technology assessment and health policy using large healthcare databases.

- Clinical epidemiological studies using the Diagnosis Procedure Combination database
- Health economics and policy studies using the governmental statistics
- Application of statistical methods for observational studies
- Integration of multiple databases
Health Communication

The Department of Health Communication conducts research on the University hospital Medical Information Network (UMIN) Center related activities as well as health communication research at various levels.

Main research topics include;
- Communication of health information to general public
- Patient-provider relationship and communication
- Health literacy
- Activities related to the UMIN
- Information systems for clinical epidemiologic studies
- Security of the information network

Mental Health

The Department of Mental Health has engaged in education and research on a wide range of topics related to mental health, such as social determinants of stress and mental health, and prevention of mental disorders and suicide. The Department provides classes of Mental Health I (epidemiology and countermeasures in mental health) and Mental Health II (occupational mental health).

- Community-based mental health epidemiology
- Occupational mental health
- Positive mental health and well-being
- Stress management
- Disaster and mental health
- Global mental health

Health and Social Behavior

The unit follows the legend of former departments of health sociology, health education, and social gerontology, and extends its academic endeavor to empirically reveal complex mechanisms between social structure/relationship and individual health/behavior. Through interdisciplinary and global communication with social science and health science, the unit aims at exploring research and education on social determinants of health, such as;

- Trans-generational health impact of socioeconomic status
- Health impact of retirement and social participation among the elderly
- Policy intervention design to alleviate social exclusion
- The impact of healthcare systems for health equity
- Social experiences of chronically ills and their health

http://plaza.umin.ac.jp/~heart/

The UNU-IIGH/UNDESA/the University of Tokyo Expert Meeting on Mental Well-being, Disability, and Development in Kuala Lumpur, Malaysia, April 2013
Health Promotion Sciences

To develop scientifically effective and useful health promotion activities and systems to prevent noncommunicable diseases, and to contribute to society, the department conducts research and education concerning the methods of planning, implementation and evaluation for various health promotion activities.

Specific research topics include:
- Development of effective health promotion programs in communities, worksites, and schools
- Assessment of the supportive environments for health behaviors
- Evaluation of the supporting methods for health behaviors
- Short- and long-term effects of behavior change
- Social and physical environments that influence health behavior and health status

http://www.ethps.m.u-tokyo.ac.jp/HPS/

Biomedical Ethics

The Department of Biomedical Ethics conducts both theoretical and empirical studies in the fields of biomedical ethics, research ethics and clinical ethics. Research topics include ethical theories, informed consent, ethics committees and organ transplantation. The Center for Biomedical Ethics and Law (CBEL) was recently set up as an adjunct to the Department of Biomedical Ethics. (http://www.cbel.jp/)

- Study of the functions and responsibilities of ethics committees in Japan
- Study of the methods for the formation of social consensus related to advanced medical technology
- Comparative study of clinical ethics in the Asian region
- Acceptability of advance directives in Japan
- Development of evaluation methods for biomedical ethics education
- Psychosocial and ethical aspects of living related organ transplantation

http://www.ethps.m.u-tokyo.ac.jp/

Health Policy

Health Policy is the academic fields in which scientific evidence is collected, established, accumulated, and disseminated for health policy making. Through studies in various aspects in health policy, our department aims to advance research, support policy development, and promote education toward these ends. This department is concurrently operated with Department of Public Health.

- Efficiency and equity issues of health systems
- Health manpower policy
- Occupational and environmental epidemiology
- Health services research

http://publichealth.m.u-tokyo.ac.jp/
Healthcare Informatics

The department conducts the practical education and research on various issues about design, development and implementation of healthcare information systems as well as electronic health record systems. These issues cover broad range of topics regarding healthcare informatics as follows: basic infrastructure of healthcare information systems and roles there, organizational theories, information management and its ethics and standardization. Solutions of various problems for promoting ICT in clinical fields are also targeted. Since both the education-research section and the practical management section in the department are organized as a single unit, students can benefit from education in many ways in the environment of practical system management field.

- Integration and big-data analysis of healthcare database
- Medical knowledge extraction using natural language processing
- Development of clinical ontology
- Development of real-time monitoring for patient safety

Clinical Information Engineering

Clinical Information Engineering focuses on computer applications that address biomedical data (collection, analysis, representation). It is a combination of information science, computer science, and clinical science designed to assist in the management and processing of data, information and knowledge to support the practice and delivery of clinical care and public health.

- CDecM: Clinical Decision Making (PEC model)
- ClinBi: Clinical Bioinformatics: Data Mining & Knowledge Discovery in Database
- ClinVR: Clinical Interactive 3D Computer Graphics & Virtual reality
- PHI: Social information engineering for Public Health (Public Health Informatics: GIS for Health Science etc.)

Forensic Medicine

We conduct autopsies, and various examinations including histology, biochemistry, radiology, toxicology, and genetics as usual practices. We also perform the following research with Education and Research Center of Legal Medicine, Chiba University.

- Study on analysis and pathophysiology of illegal drugs including new psychoactive substances.
- Application of imaging modalities such as CT, or MRI for death investigation.
- Study on age and stature estimation by using CT.
- Study on mechanical properties of human tissue.
- Study on diagnosis of drowning.
Molecular Biomedicine for Pathogenesis

Our laboratory focuses on clarification of the pathogenesis of various diseases and the related physiological machineries in cellular and molecular aspects. Based on our technical advantage in gene manipulation via gene knockout and transgenesis, we give high priorities to in vitro analyses. Our overall goal is to apply our findings to develop a fundamental therapy against diseases via AIM (Apoptosis Inhibitor of Macrophage).

- Roles of AIM molecule in pathogenesis of metabolic disorders including obesity, diabetes, and atherosclerosis
- Involvements and roles of AIM molecule in diseases other than metabolic disorders, such as infertility, autoimmunity, and cancer
- Development of the direct therapeutic application of our findings

Structural Physiology

We have been exploring two-photon excitation microscopy, which utilizes an infrared femtosecond-pulsed laser as a light source, to visualize and stimulate intact tissues at the cellular and molecular levels. We focus on the functions and disorders of the brain and secretory organs.

- The dynamics of synapses in the cerebral cortex, in relation to memory, cognitive processes and mental disorders
- Molecular mechanisms of exocytosis in synapses and the islet of Langerhans, and their optical control

AIM: The Key stone in Modern diseases

http://www.cdbim.m.u-tokyo.ac.jp/english/index.html

http://www.bm2.m.u-tokyo.ac.jp/index-e.html
Regenerative Medical Engineering

We aim to create a basic methodology for tissue engineering by integrating engineering sciences such as mechanical, material, and chemical system engineering into basic and clinical medicine. Especially for the regeneration of bones, cartilages, and blood vessels, we focus on cellular response to physical stimulations, which can be utilized instead of growth factors and cytokines. In addition, fabrication of new biomaterials is important. We develop new biocompatible hydrogels based on polysaccharides, hyperbranched polymers, and DNA analogues, which materials are applied to drug delivery systems for peritoneal diseases, artificial red blood cells, and artificial pancreas islets.

- Development of new polymeric and inorganic biomaterials for regenerative medicine
- In vitro regeneration of carriages, bones, and small blood vessels
- Mechanism of cellular response to physical stimulations
- Fabrication of new biocompatible hydrogels
- Development of anti-peritoneal adhesion barrier and drug delivery system for peritoneal diseases
- Development of artificial pancreatic islet by a microcapsulation technique, and development of artificial red blood cells by a membrane emulsification technique

Clinical Biotechnology

"Medical nanodevices", which are constructed by integrating medical materials and systems, hold promise for the futuristic medical system that can serve the needed function at the right time and the right place with minimal invasiveness. Our division wishes to produce innovative medical nanodevices based on nanobiotechnology, and further, to spread the idea of "Nanomedicine" intranationally and internationally.

- Construction of multifunctional nanodevices based on self-assemblies of synthetic polymers
- Targeted cancer therapy with anticancer drug-loaded nanodevices
- Study on the packaging mechanism of plasmid DNA with block catiomers for creation of artificial viruses
- Development and applications of polyion complex-based vesicular nanodevices

Environmental Health Sciences

Children's health problems of today include such conditions as disorders in the reproductive and immune functions, learning deficits, mental problem and metabolic syndrome. Our research is carried out on the recognition that the homeostasis is disrupted by various environmentally hazardous chemicals, to which expectant mothers and their newborn babies are exposed during their highly sensitive period of life, and that the contamination with these chemicals may lead to various disease conditions in children after birth. Our experimental investigations are focused on the following themes.

- Elucidation of mechanisms involved in the manifestation of toxicity at the molecular and cellular level due to exposure to environmental pollutants, such as dioxin/PCBs and heavy metals
- Clarification of epigenetic mechanisms that alter susceptibility to environmental chemicals
- Development of methodologies for evaluating the toxicity of chemicals to the learning and emotion of rodents and of in vitro toxicity techniques at the molecular and cellular levels
- Development and application of techniques and methodology for evaluating risks of toxic substances in formulating safety standard for the environment and food
Animal Resources / Research Resources and Support - Animal Research

Our laboratory focuses on understanding the molecular mechanisms which underlie the brain function and cancer development. We also try to generate animal models for human genetic diseases. Recently we established the gene targeting methods using CRISPR/Cas system. We also manage the animal facilities, provide reproductive technology service, advice on animal experiments, and give lectures on laboratory animals so that animal experiments are carried out in accordance with animal welfare.

- Molecular analysis of brain function and cancer using genetically modified mice
- Development of new model animals for human diseases
- Development of gene targeting animals using CRISPR/Cas system

Molecular Radiology / Research Resources and Support - Radiation Biology

We are investigating the molecular mechanisms of DNA double-strand break repair as the scientific basis of radiation therapy and chemotherapy in medical oncology. We also promote the basic research that contributes to the development of a novel therapeutic strategy by examining a link of the DNA metabolic network including DNA replication and cell cycle control with chromosome instability.

- Molecular mechanisms of homologous recombinational repair
- Mechanisms of the choice between homologous recombination and non-homologous end-joining
- Molecular mechanisms of DNA rereplication
- Mechanisms of the genesis of aneuploidy
- Functional analysis of meiotic recombination genes

Research Resources and Support - Bioinformatics

Targeting biomedical research support using information technologies, the division performs management of the research network and the central servers of the Graduate School of Medicine, and researches on knowledge infrastructure and processing techniques (e.g. information model, ontology, natural language processing, machine reasoning, etc.) and their application to clinical practice.

- Biomedical research support using network system
- Medical terminologies and ontologies
- Standardization of healthcare information and information models
- Natural language processing and its application to the medical domain
- Machine reasoning and clinical decision support systems

http://www.cdbim.m.u-tokyo.ac.jp/english/index.html

Centrosome fragmentation which may lead to aneuploidy

A mutant mouse lacking metabotropic glutamate receptor subtype-1 (mGluR1)
Department of Medical Education Studies

Faculty and staff in this department do research on a wide range of topics in undergraduate and postgraduate medical education. One goal is to move this field of inquiry forward by putting into practice the information obtained from action-oriented research done with full appreciation of the trends in international research on medical education. This department also makes important contributions to undergraduate and postgraduate medical curricula, in ways that promote the development of research-minded and clinically skilled medical practitioners who can meet and exceed the highest international standards and can become global leaders.

International Cooperation for Medical Education

This department is to aim at participating international cooperation projects in medical education area and conducting practical research and development through activities mainly in Asian countries. Furthermore the department domestically and internationally collects information and expands human exchanges regarding international cooperation in medical education area, and supports projects related to medical education.
The Office of International Academic Affairs

The Office of International Academic Affairs is under the direct authority of the Dean of the Graduate School of Medicine. Its four most important roles, as defined by the Committee on International Academic Affairs, are i) international educational exchange, ii) international contacts in research and scientific fields, iii) helping young researchers excel not only as scientists, but also as educators for the next generation and as administrators of their research groups, and iv) holding Medical English classes and developing language-teaching materials for medical students.

Medical Scientist Training Program

Medical Scientist Training Program was launched in 2008, aiming that medical students have the opportunity to experience basic medical research in their early years and learn the attitude as a researcher. Students taking this program will attend activities such as journal club, medical English course, an assignment to the lab, and FQ, during their free time in addition to their usual curriculum. Students are also expected to build up a network among medical students who intend to be a researcher through the program support, such as the short term stay at labs abroad, participations to the symposium, and the excursion with other universities.
Office for Research Ethics Support

The Office for Research Ethics Support (ORES) aims to protect the rights, health, and dignity of research participants. Based on this principle, ORES supports researchers at the Graduate School of Medicine, the Faculty of Medicine and the University Hospital to perform their studies in an ethical manner. Our primary task is the management of the Ethics Committee secretariat. Additionally, we plan and manage research ethics seminars, provide ethics education to researchers through consultations, develop human resources for future research ethics specialists, and conduct related researches.

Life Sciences Core Facility

Life Sciences Core Facility provides researchers at the graduate school of medicine and the faculty of medicine access and technical assistance to specialized instruments including mass spectrometers, cell sorters, flow cytometers and a state-of-the-art fluorescent microscope.

The Office for Clinical Practice and Medical Education

The Office for Clinical Practice and Medical Education, formerly the Clinical Clerkship Support Center, was established in April 2015, to support and promote medical education, especially clinical practice in the 5th and 6th years. The aim is to facilitate clinical clerkship management, as well as to improve the clerkship curriculum and evaluation methods through consultation of the teaching staff and interviews with students. In addition, we try to support individual students in cooperation with the Faculty of Medicine’s educational administrators and the Office for Student Assistance.
Medical Library

The University of Tokyo Medical Library was opened in 1961 as a model of the Japanese modern medical library. The view makes it a perfect place to concentrate on study. The library has adopted an open stack system so that users can have direct access to almost all the materials.

- Holdings:
 - Books (number of volumes): 284,100 (Japanese 114,445, Foreign 169,655)
 - Periodicals (number of titles): 5,262 (Japanese 3,069, Foreign 2,193)
- Visitors: 75,368
- Borrowed Books: 12,859

Museum of Health and Medicine

Museum of Health and Medicine was planned as part of commemorative projects to celebrate the 150th anniversary of the founding of the School and the University of Tokyo Hospital, and was opened on January 20, 2011. The permanent exhibition was a display of medical archives and instruments from the early Meiji era, Ishihara’s Color Blind Test Charts and a gastroscope developed at the University. Special exhibitions are planned to promote understanding among the public regarding advances in medical science and health care. Following the first special exhibition is related to the beginnings of the School and the Hospital, entitled “the Challenge to Infectious Diseases”, six special exhibitions which introduced blood vessel, cancer, brain, locomotive syndrome, diabetes mellitus, growth of the child, were held.

We will hold two special exhibitions every year and special events for our visitors.
The University of Tokyo